Polyphase Radar Signals with Zero Autocorrelation Zone and Their Compression Algorithm

  • Roman N. IpanovEmail author
  • Sergey M. Smolskiy
Part of the Intelligent Systems Reference Library book series (ISRL, volume 184)


The polyphase (p-phase, where p is the prime integer number) radar signal, which has an area of zero side lobes in a vicinity of the central peak of autocorrelation function, has been synthesized. It is shown that this signal represents a train from p coherent phase-code-shift keyed pulses, which are coded by complementary sequences of the p-ary D-code. The method of ensemble set formation of the p-ary D-code for signal synthesis is suggested. Correlation characteristics of the synthesized signal are discussed. The compression algorithm of this signal is considered including in its structure the combined algorithm of Vilenkin-Chrestenson and fast Fourier transform.


Autocorrelation function Complementary sequences Polyphase signal Pulse train Vilenkin-Chrestenson functions Zero autocorrelation zone 



Investigation is performed at financing from the Russian Scientific Fund grant (the project No 17–19–01616).


  1. 1.
    Wu, H., Delisle, G.Y.: Precision tracking algorithms for ISAR imaging. IEEE Trans. Aerosp. Electron. Syst. 32(1), 243–254 (1996)CrossRefGoogle Scholar
  2. 2.
    Wehner, D.R.: High Resolution Radar. Artech House, Norwood (1994)Google Scholar
  3. 3.
    Akbaripour, A., Bastani, M.H.: Range sidelobe reduction filter design for binary coded pulse compression system. IEEE Trans. Aerosp. Electron. Syst. 48(1), 348–359 (2012)CrossRefGoogle Scholar
  4. 4.
    Mozeson, E., Levanon, N.: Removing autocorrelation sidelobes by overlaying orthogonal coding on any train of identical pulses. IEEE Trans. Aerosp. Electron. Syst. 39(2), 583–603 (2003)CrossRefGoogle Scholar
  5. 5.
    Sivaswamy, R.: Digital and analog subcomplementary sequences for pulse compression. IEEE Trans. Aerosp. Electron. Syst. AES 14(2), 343–350 (1978)CrossRefGoogle Scholar
  6. 6.
    Levanon, N., Mozeson, E.: Radar Signals. Wiley, Hoboken (2004)CrossRefGoogle Scholar
  7. 7.
    Chebanov, D., Lu, G.: Removing autocorrelation sidelobes of phase-coded waveforms. In: 2010 IEEE Radar Conference, Washington, May 2010, pp. 1428–1433. IEEE, New York (2010)Google Scholar
  8. 8.
    Ipanov, R.N., Baskakov, A.I., Olyunin, N., Ka, M.-H.: Radar signals with ZACZ based on pairs of D-code sequences and their compression algorithm. IEEE Signal Proc. Lett. 25(10), 1560–1564 (2018)CrossRefGoogle Scholar
  9. 9.
    Wang, H., Diao, M., Gao, L.: Low probability of intercept radar waveform recognition based on dictionary leaming. In: 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, October 2018, pp. 1–6. IEEE, New York (2018)Google Scholar
  10. 10.
    Zhang, M., Liu, L., Diao, M.: LPI radar waveform recognition based on time-frequency distribution. Sensors 16(10), 1682 (2016)CrossRefGoogle Scholar
  11. 11.
    Carlson, E.J.: Low probability of intercept (LPI) techniques and implementations for radar systems. In: Proceedings of the 1988 IEEE National Radar Conference, Ann Arbor, April 1988, pp. 56–60. IEEE, New York (1988)Google Scholar
  12. 12.
    Durai, R.R., Suehiro, N., Han, C.: Complete complementary sequences of different length. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A(7), 1428–1431 (2007)CrossRefGoogle Scholar
  13. 13.
    Welti, G.: Quaternary codes for pulsed radar. IRE Trans. Inf. Theor. 6(3), 400–408 (1960)CrossRefGoogle Scholar
  14. 14.
    Ipanov, R.N.: Polyphase coherent complemented signals. J. Radio Electron. (2017). Accessed 23 Jan 2017
  15. 15.
    Chrestenson, H.F.: A class of generalized Walsh functions. Pacific J. Math. 5, 17–31 (1955)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Helm, H.A.: Group codes Walsh functions. IEEE Trans. Electromagn. Compat. EMC 13(3), 78–83 (1971)CrossRefGoogle Scholar
  17. 17.
    Ipanov, R.N.: Pulsed phase-shift keyed signals with zero autocorrelation zone. J. Commun. Techn. Electron. 63(8), 895–901 (2018)CrossRefGoogle Scholar
  18. 18.
    Ipanov R.N.: The Formation Method of the Ensemble Variety of p-ary D-codes. RU Patent 2,670,773, 25 October 2018Google Scholar
  19. 19.
    Zhou, M., Shi, X., Liu, Z.: Chrestenson transform and its relations with Fourier transform. In: 2015 Third International Conference on Robot, Vision and Signal Processing (RVSP), Kaohsiung, November 2015, pp. 212–215. IEEE, New York (2016)Google Scholar
  20. 20.
    Ipanov R.N.: Device of Digital Processing of Polyphase Additional Phase-Codes-Hift Keyed Signals. RU Patent 2,647,632, 16 March 2018Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National Research University “Moscow Power Engineering Institute”MoscowRussian Federation

Personalised recommendations