Properties of Cellulose Based Bio-fibres Reinforced Polymer Composites

  • M. RameshEmail author
  • C. Deepa


In recent years, both industrial and academia are focusing their attention towards the development of sustainable composites, reinforced with cellulose fibres. To make use of these fibres, the properties of these fibres must be evaluated. In this chapter, the various mechanical, thermal and morphological properties and other characteristics of cellulose fibre reinforced composites (CFRCs) carried out by various researchers have been discussed. Different factors have been addressed to improve the adhesion of the fibre matrix resulting in the improvement of the properties of the bio-composites. The chapter concludes that the CFRCs are one of the new fields of material science for use in various applications ranging from the automotive to the construction industries.


Cellulose fibres Bio-composites Mechanical properties Thermal properties Morphological studies FTIR analysis 


  1. 1.
    Madhu, P., Sanjay, M. R., Senthamaraikannan, P., Pradeep, S., Saravanakumar, S. S., & Yogesha, B. (2017). A review on synthesis and characterization of commercially available natural fibres: Part II. Journal of Natural Fibers. Scholar
  2. 2.
    Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221–274.CrossRefGoogle Scholar
  3. 3.
    Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibres: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596.CrossRefGoogle Scholar
  4. 4.
    John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343–364.CrossRefGoogle Scholar
  5. 5.
    La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A, 42(6), 579–588.CrossRefGoogle Scholar
  6. 6.
    Conroy, A., Halliwell, S., & Reynolds, T. (2006). Composite recycling in the construction industry. Composites Part A, 37(8), 1216–1222.CrossRefGoogle Scholar
  7. 7.
    Pickering, S. J. (2006). Recycling technologies for thermoset composite materials-current status. Composites Part A, 37(8), 1206–1215.CrossRefGoogle Scholar
  8. 8.
    Meghdad, K. M., & Mortazavi, S. M. (2016). Physical and chemical properties of natural fibres extracted from Typha Australis leaves. Journal of Natural Fibers, 13, 353–361.CrossRefGoogle Scholar
  9. 9.
    Palanikumar, K., Ramesh, M., & Reddy, K. H. (2016). Experimental investigation on the mechanical properties of green hybrid sisal and glass fibre reinforced polymer composites. Journal of Natural Fibers, 13(3), 321–331.CrossRefGoogle Scholar
  10. 10.
    Ramesh, M. (2016). Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties. Progress in Materials Science, 78–79, 1–92.CrossRefGoogle Scholar
  11. 11.
    Ramesh, M., Deepa, C., Aswin, U. S., Eashwar, H., Mahadevan, B., & Murugan, D. (2017). Effect of alkalization on mechanical and moisture absorption properties of Azadirachta indica (Neem Tree) fibre reinforced green composites. Transactions of the Indian Institute of Metals, 70(1), 187–199.CrossRefGoogle Scholar
  12. 12.
    Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2014). Progress report on natural fibre reinforced composites. Macromolecular Materials and Engineering, 299(1), 9–26.Google Scholar
  13. 13.
    Furtado, S. C., Araujo, A. L., Silva, A., Alves, C., & Ribeiro, A. M. R. (2014). Natural fibre-reinforced composite parts for automotive applications. International Journal of Automotive Composites, 1(1), 18–38.CrossRefGoogle Scholar
  14. 14.
    Pilla, S. (2011). Engineering applications of bioplastics and biocomposites—An overview. In Handbook of bioplastics and biocomposites engineering applications (pp. 1–15). Wiley.Google Scholar
  15. 15.
    Akin, D. E., Foulk, J. A., Dodd, R. B., & Epps, H. H. (2006). Enzyme-retted flax using different formulations and processed through the USDA flax fibre pilot plant. Journal of Natural Fibers, 3, 55–68.CrossRefGoogle Scholar
  16. 16.
    Biagiotti, J., Puglia, D., & Kenny, J. M. (2004). A review on natural fibre based composites-Part I. Journal of Natural Fibers, 1(2), 37–68.CrossRefGoogle Scholar
  17. 17.
    Dittenber, D. B., & GangaRao, H. V. S. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites Part A, 43, 1419–1429.CrossRefGoogle Scholar
  18. 18.
    Yan, W., Liang, L., Yunfei, Z., Maoxing, X., & Qing, S. (2013). Techno-economic analysis of fibre reinforced polymer substation. Architecture, Building Materials and Engineering Management, 1–4(357–360), 1194–1199.Google Scholar
  19. 19.
    Yan, L., Chouw, N., & Jayaraman, K. (2014). Effect of triggering and polyurethane foam filler on axial crushing of natural flax/epoxy composite tubes. Materials and Design, 56, 528–541.CrossRefGoogle Scholar
  20. 20.
    Yan, L., Chouw, N., & Jayaraman, K. (2014). Flax fibre and its composites: A review. Composites Part B: Engineering, 56, 296–317.CrossRefGoogle Scholar
  21. 21.
    Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials and Design, 47, 424–442.CrossRefGoogle Scholar
  22. 22.
    Obi Reddy, C., Umamaheswari, E., Muzenda, M., Shukla, & Rajulu, A. V. (2016). Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf fibres. Journal of Natural Fibers, 13, 54–64.Google Scholar
  23. 23.
    Samson, R., & Tomkova, B. (2015). Morphological, thermal, and mechanical characterization of Sansevieria trifasciata fibres. Journal of Natural Fibers, 12, 201–210.CrossRefGoogle Scholar
  24. 24.
    Pereira, P. H. F., Rosa, M. D. F., Cioffi, M. O. H., Benini, K. C. C. D. C., Milanese, A. C., Voorwald, H. J. C., et al. (2015). Vegetal fibres in polymeric composites: a review. Polimeros, 25(1), 9–22.CrossRefGoogle Scholar
  25. 25.
    Ardanuy, M., Claramunt, J., & Filho, R. D. T. (2005). Cellulosic fibre reinforced cement based composites: A review of recent research. Construction and Building Materials, 79, 115–128.CrossRefGoogle Scholar
  26. 26.
    Speck, T., & Burgert, I. (2011). Plant stems: functional design and mechanics. Annual Review of Materials Research, 41, 169–193.CrossRefGoogle Scholar
  27. 27.
    Facca, A., Kortschot, M., & Yan, N. (2006). Predicting the elastic modulus of natural fibre reinforced thermoplastics. Composites Part A, 37, 1660–1671.CrossRefGoogle Scholar
  28. 28.
    Madsen, B., & Lilholt, H. (2003). Physical and mechanical properties of unidirectional plant fibre composites: an evaluation of the influence of porosity. Composites Science and Technology, 63, 1265–1272.CrossRefGoogle Scholar
  29. 29.
    Mussig, J., Rau, S., & Herrmann, A. S. (2006). Influence of fineness, stiffness and load displacement characteristic of natural fibres on the properties of natural fibre-reinforced polymers. Journal of Natural Fibers, 3, 59–80.CrossRefGoogle Scholar
  30. 30.
    Sawpan, M., Pickering, K., & Fernyhough, A. (2007). Hemp fibre reinforced poly (lactic acid) composites. Advances in Materials Research, 29–30, 337–340.CrossRefGoogle Scholar
  31. 31.
    Ramesh, M., Palanikumar, K., & Reddy, K. H. (2017). Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews, 79, 558–584.CrossRefGoogle Scholar
  32. 32.
    Park, J. M., Son, T. Q., Jung, J. G., & Hwang, B. S. (2006). Interfacial evaluation of single ramie and kenaf fibre/epoxy resin composites using micromechanical test and nondestructive acoustic emission. Composite Interfaces, 13, 105–129.CrossRefGoogle Scholar
  33. 33.
    Ochi, S. (2008). Mechanical properties of kenaf fibres and kenaf/PLA composites. Mechanics of Materials, 40, 446–452.CrossRefGoogle Scholar
  34. 34.
    Graupner, N., Labonte, D., & Mussig, J. (2017). Rhubarb petioles inspire biodegradable cellulose fibre-reinforced PLA composites with increased impact strength. Composites Part A, 98, 218–226.CrossRefGoogle Scholar
  35. 35.
    Huber, T., Graupner, N., & Mussig, J. (2009). As tough as it is delicious? A mechanical and structural analysis of red rhubarb (Rheum rhabarbarum). Journal of Materials Science, 44(15), 4195–4199.CrossRefGoogle Scholar
  36. 36.
    Ramesh, M., Palanikumar, K., & Reddy, K. H. (2013). Mechanical property evaluation of sisal-jute-glass fibre reinforced polyester composites. Composites Part B: Engineering, 48, 1–9.CrossRefGoogle Scholar
  37. 37.
    Jayaraman, K., & Bhattacharya, D. (2004). Mechanical performance of wood fibre-waste plastic composite materials. Resources, Conservation and Recycling, 41, 307–319.CrossRefGoogle Scholar
  38. 38.
    Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2015). Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf-aramid hybrid laminated composites. Materials and Design, 67, 173–179.CrossRefGoogle Scholar
  39. 39.
    Maslinda, A. B., Majid, M. S. A., Ridzuan, M. J. M., Afendi, M., & Gibson, A. G. (2017). Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Composite Structures, 167, 227–237.CrossRefGoogle Scholar
  40. 40.
    Mansour, R., Hocine, O., Abdellatif, I., & Noureddine, B. (2011). Effect of chemical treatment on flexure properties of natural fibre-reinforced polyester composite. Procedia Engineering, 10, 2092–2097.CrossRefGoogle Scholar
  41. 41.
    Gopalaratnam, V. S., Shah, S. P., & John, R. (1984). A modified instrumented charpy test for cement based composites. Experimental Mechanics, 24, 102–111.CrossRefGoogle Scholar
  42. 42.
    Balaguru, P. N., & Shah, S. P. (1992). Fibre-reinforced cement composites. UK: McGraw Hill Inc.Google Scholar
  43. 43.
    Cristina D. O.N., Ailton, S. F., Sergio, N. M., Regina Coeli, M. P., & Satyanarayana, G., (2012). Studies on the characterization of piassava fibres and their epoxy composites. Composites Part A: Applied Science and Manufacturing, 43(3), 353–362.Google Scholar
  44. 44.
    Vieira. L.M.G., J.C.d. Santos, T. H. Panzera, A.L. Christoforo., V. Mano, J.C.C. Rubio., F. Scarpa. (2016). Hybrid composites based on sisal fibres and silica nanoparticles. Polym. Compos. doi: 10.1002/pc.23915.CrossRefGoogle Scholar
  45. 45.
    Ray, D., Sarkar, B. K., & Bose, N. R. (2002). Impact fatigue behaviour of vinyl ester resin matrix composite reinforced with alkali treated jute fibres. Compos Part A-Appl. Sci. Manufact., 33(2), 233–241.CrossRefGoogle Scholar
  46. 46.
    Gamstedt, E. K., & Talreja, R. (1999). Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics. Journal of Materials Science, 34, 2535–2546.CrossRefGoogle Scholar
  47. 47.
    Quaresimin, M. (2015). Multi-axial fatigue testing of composites: from the pioneers to future directions. Strain, 51, 16–29.CrossRefGoogle Scholar
  48. 48.
    Ferreira, J. M., Silva, H., Costa, J. D., & Richardson, M. (2005). Stress analysis of lap joints involving natural fibre reinforced interface lay ers. Composites Part B: Engineering, 36, 1–7.CrossRefGoogle Scholar
  49. 49.
    Quaresimin, M., Susmel, L., & Talreja, R. (2010). Fatigue behaviour and life assessment of composite laminates under multi-axial loadings. International Journal of Fatigue, 32, 2–16.CrossRefGoogle Scholar
  50. 50.
    Amijima, S., Fujii, T., & Hamaguchi, M. (1995). Static and fatigue tests of a woven glass fabric composite under biaxial tension-torsion loading. Composites, 22, 281–289.CrossRefGoogle Scholar
  51. 51.
    Ramesh, M. (2018). Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science. Scholar
  52. 52.
    Gassan, S. (2002). A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Composites Part A: Applied Science and Manufacturing, 33(3), 369–374.CrossRefGoogle Scholar
  53. 53.
    Mylsamy, K., & Rajendran, I. (2011). The mechanical properties, deformation and thermo mechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Materials and Design, 32(5), 3076–3084.CrossRefGoogle Scholar
  54. 54.
    Franc, P. H., & Vega, M. A. (1997). Effect of fibre treatment on the mechanical properties of LDPE-henequen cellulosic fibre composites. Journal of Applied Polymer Science, 10, 197–207.CrossRefGoogle Scholar
  55. 55.
    Manimaran, P., Senthamaraikannan, P., Murugananthan, K., & Sanjay, M. R. (2017). Physicochemical properties of new cellulosic fibres from azadirachta indica plant. Journal of Natural Fibers. Scholar
  56. 56.
    Julkapli, N. M., & Akil, H. M. (2010). Thermal properties of kenaf-filled chitosan bio-composites. Polymer-Plastics Technology and Engineering, 49, 147–153.CrossRefGoogle Scholar
  57. 57.
    Paul, S. A., Boudenne, A., Ibos, L., Candau, Y., Joseph, K., & Thomas, S. (2008). Effect of fibre loading and chemical treatments on thermo-physical properties of banana fibre/polypropylene commingled composite materials. Composites Part A: Applied Science and Manufacturing, 39(9), 1582–1588.CrossRefGoogle Scholar
  58. 58.
    Hao, A., Zhao, H., & Chen, J. Y. (2013). Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal and acoustical performance. Composites Part B, 54, 44–51.CrossRefGoogle Scholar
  59. 59.
    Kumar, R., Hyness, N. R. J., Senthamaraikannan, P., Saravanakumar, S. S., & Sanjay, M. R. (2017). Physicochemical and thermal properties of ceiba pentandra bark fibre. Journal of Natural Fibers. Scholar
  60. 60.
    Maheshwaran, M. V., Hyness, N. R. J., Senthamaraikannan, P., Saravanakumar, S. S., & Sanjay, M. R. (2017). Characterization of natural cellulosic fibre from Epipremnum aureum stem. Journal of Natural Fibers. Scholar
  61. 61.
    Ishak, M. R., Leman, Z., Sapuan, S. M., Rahman, M. Z. A., & Anwar, U. M. K. (2013). Chemical composition and FTIR spectra of sugar palm (Arenga pinnata) fibres obtained from different heights. Journal of Natural Fibers, 10, 83–97.CrossRefGoogle Scholar
  62. 62.
    Tserki, V., Zafeiropoulos, N. E., Simon, F., & Panayiotou, C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A, 36, 1110–1118.CrossRefGoogle Scholar
  63. 63.
    Bledzki, A. K., Mamun, A. A., Gabor, M. L., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422.Google Scholar
  64. 64.
    Arthanarieswaran, V. P., Kumaravel, A., & Saravanakumar, S. S. (2015). Characterization of new natural cellulosic fibre from Acacia leucophloea bark. International Journal of Polymer Analysis and Characterization, 20, 367–376.CrossRefGoogle Scholar
  65. 65.
    Arthanarieswaran, V. P., Kumaravel, A., Kathirselvam, M., & Saravanakumar, S. S. (2016). Mechanical and thermal properties of Acacia leucophloea fibre/epoxy composites: Influence of fibre loading and alkali treatment. International Journal of Polymer Analysis and Characterization, 21(7), 571–583.CrossRefGoogle Scholar
  66. 66.
    Varada Rajulu, A., Devi, L. G., Rao, G. B., & Reddy, R. L. (2003). Chemical resistance and tensile properties of epoxy/unsaturated polyester blend coated bamboo fibres. Journal of Reinforced Plastics and Composites, 22(11), 1029–1034.CrossRefGoogle Scholar
  67. 67.
    Saravanakumar, S. S., Kumaravel, A., Nagarajan, T., Sudhakar, P., & Baskaran, R. (2013). Characterization of a novel natural cellulosic fibre from prosopis juliflora bark. Carbohydrate Polymers, 92, 1928–1933.CrossRefGoogle Scholar
  68. 68.
    Hyness, N. R. J., Vignesh, N. J., Senthamaraikannan, P., Saravanakumar, S. S., & Sanjay, M. R. (2017). Characterization of new natural cellulosic fibre from heteropogon contortus plant. Journal of Natural Fibers. Scholar
  69. 69.
    Obi Reddy, K., Zhang, J., Zhang, J., & Varadarajulu, A. (2014). Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohydrate Polymers, 114, 537–545.CrossRefGoogle Scholar
  70. 70.
    Aparna, R., Sumit, C., Prasad, K. S., Kumar, B. R., Basu, M. S., & Adhikari, B. (2012). Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresource Technology, 107, 222–228.CrossRefGoogle Scholar
  71. 71.
    Belouadaha, Z., Ati, A., & Rokbi, M. (2015). Characterization of new natural cellulosic fibre from Lygeum spartum L. Carbohydrate Polymers, 134, 429–437.CrossRefGoogle Scholar
  72. 72.
    Beg, M. D. H., & Pickering, K. L. (2008). Mechanical performance of kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Composities Part A, 39, 1748–1755.CrossRefGoogle Scholar
  73. 73.
    Chow, C. P. L., Xing, X. S., & Li, R. K. Y. (2007). Moisture absorption studies of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 67, 306–313.CrossRefGoogle Scholar
  74. 74.
    Dhakal, H. N., Zhang, Z. Y., & Richardson, M. O. W. (2007). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 67, 1674–1683.CrossRefGoogle Scholar
  75. 75.
    Doan, T. T. L., Brodowsky, H., & Mader, E. (2001). Jute fibre/polypropylene composites II: Thermal, hydrothermal and dynamic mechanical behavior. Composites Science and Technology, 67, 2707–2714.CrossRefGoogle Scholar
  76. 76.
    Talavera, F. J. F., Guzman, J. A. S., Richter, H. G., Duenas, R. S., & Quirarte, J. R. (2007). Effect of production variables on bending properties, water absorption and thickness swelling of baggase/plastic composite boards. Industrial Crops and Products, 26, 1–7.CrossRefGoogle Scholar
  77. 77.
    Haameem, M. J. A., Majid, M. S. A., Afendi, M., Marzuki, H. F. A., Hilmi, E. A., Fahmi, I., et al. (2016). Effects of water absorption on Napier grass fibre/polyester composites. Composite Structures, 144, 138–146.CrossRefGoogle Scholar
  78. 78.
    Salleh, Z., Taib, Y. M., Hyie, K. M., Mihat, M., Berhan, M. N., & Ghani, M. A. A. (2012). Fracture toughness investigation on long kenaf/woven glass hybrid composite due to water absorption effect. Procedia Engineering, 41, 1667–1673.CrossRefGoogle Scholar
  79. 79.
    Rassmann, S., Reid, R. G., & Paskaramoorthy, R. (2010). Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Composites Part A, 41, 1612–1629.CrossRefGoogle Scholar
  80. 80.
    Dhakal, H. N., Sarasini, F., Santulli, C., Tirillo, J., Zhang, Z., & Arumugam, V. (2015). Effect of basalt fibre hybridisation on post-impact mechanical behaviour of hemp fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 75, 54–67.Google Scholar
  81. 81.
    Chin, C. W., & Yousif, B. F. (2009). Potential of kenaf fibres as reinforcement for tribological applications. Wear, 267, 1550–1557.CrossRefGoogle Scholar
  82. 82.
    Szopa, J., Kwiatkowska, M. W., Kulma, A., Zuk, M., Telichowska, K. S., Dyminska, L., et al. (2009). Chemical composition and molecular structure of fibres from transgenic flax producing polyhydroxybutyrate, and mechanical properties and platelet aggregation of composite materials containing these fibres. Composites Science and Technology, 69, 2438–2446.CrossRefGoogle Scholar
  83. 83.
    Abdullah, A. H., Khalina, A., & Ali, A. (2011). Effects of fibre volume fraction on unidirectional kenaf/epoxy composites: The transition region. Polymer-Plastics Technology and Engineering, 50(13), 1362–1366.CrossRefGoogle Scholar
  84. 84.
    Taib, R. M., Hassan, H. M., & Ishak, Z. A. M. (2014). Mechanical and morphological properties of polylactic acid/kenaf bast fibre composites toughened with an impact modifier. Polymer-Plastics Technology and Engineering, 53(2), 199–206.CrossRefGoogle Scholar
  85. 85.
    Suriani, M. J., Ali, A., Khalina, A., Sapuan, S. M., & Abdullah, S. (2012). Detection of defects in kenaf/epoxy using infrared thermal imaging technique. Procedia Chemistry, 4, 172–178.CrossRefGoogle Scholar
  86. 86.
    Sarikanat, M., Seki, Y., Sever, K., & Kahya, C. D. (2014). Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B: Engineering, 57, 180–186.CrossRefGoogle Scholar
  87. 87.
    Cao, X. V., Ismail, H., Rashid, A. A., Takeichi, T., & Huu, T. V. (2012). Maleated natural rubber as a coupling agent for recycled high density polyethylene/natural rubber/kenaf powder bio-composites. Polymer-Plastics Technology and Engineering, 51(9), 904–910.CrossRefGoogle Scholar
  88. 88.
    Hadjadj, A., Jbara, O., Tara, A., Gilliot, M., Malek, F., Maafi, E. M., et al. (2016). Effects of cellulose fibre content on physical properties of polyurethane based composites. Composite Structures, 135, 217–223.CrossRefGoogle Scholar
  89. 89.
    Piltonen, P., Hildebrandt, N. C., Westerlind, B., Valkama, J. P., Tervahartiala, T., & Illikainen, M. (2016). Green and efficient method for preparing all-cellulose composites with NaOH/urea solvent. Composites Science and Technology, 135, 153–158.CrossRefGoogle Scholar
  90. 90.
    Athijayamani, A., Thiruchitrambalam, M., Natarajan, U., & Pazhanivel, B. (2009). Effect of moisture absorption on the mechanical properties of randomly oriented natural fibres/polyester hybrid composite. Materials Science and Engineering A, 517, 344–353.CrossRefGoogle Scholar
  91. 91.
    Memona, A., & Nakai, A. (2013). Mechanical properties of jute spun yarn/PLA tubular braided composite by pultrusion molding. Energy Procedia, 34, 818–829.CrossRefGoogle Scholar
  92. 92.
    Ying, Z., Wu, D., Zhang, M., & Qiu, Y. (2017). Polylactide/basalt fibre composites with tailorable mechanical properties: Effect of surface treatment of fibres and annealing. Composite Structures, 176, 1020–1027.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKIT-Kalaignarkarunanidhi Institute of TechnologyCoimbatoreIndia
  2. 2.Department of Computer Science and EngineeringKIT-Kalaignarkarunanidhi Institute of TechnologyCoimbatoreIndia

Personalised recommendations