Advertisement

Structure and Surface Morphology Techniques for Biopolymers

  • Sabarish Radoor
  • Jasila Karayil
  • Aswathy Jayakumar
  • E. K. Radhakrishnan
  • Lakshmanan Muthulakshmi
  • Sanjay Mavinkere Rangappa
  • Suchart Siengchin
  • Jyotishkumar ParameswaranpillaiEmail author
Chapter
  • 28 Downloads

Abstract

Different techniques such as optical microscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, nuclear magnetic resonance, X-ray diffraction, and Fourier-transform infrared spectroscopy are used for the examination of biopolymer-based materials. This chapter discusses the characterisation of structure and surface morphology of the biopolymers, their blends, and composites by these techniques. A careful examination of biopolymers, their blends and composites are essential for the fruitful application of these materials.

References

  1. 1.
    Grumezescu, A. M. (2017). Food packaging. Amsterdam; Boston: AP/Elsevier, 768 pp.Google Scholar
  2. 2.
    Poole-Warren, L., Martens, P., & Green, R. (2015). Biosynthetic polymers for medical applications. Elsevier.Google Scholar
  3. 3.
    Grumezescu, A. M. (2016). Nanobiomaterials in Galenic formulations and cosmetics: Applications of nanobiomaterials. Amsterdam; Boston: Elsevier/WA, William Andrew is an imprint of Elsevier, 433 pp.Google Scholar
  4. 4.
    Bajpai, P. (2019). Biobased polymers: Properties and applications (1st ed.). Cambridge: Elsevier, 250 pp.Google Scholar
  5. 5.
    Das, T. K., & Prusty, S. (2017). Biopolymer composites in field-effect transistors. In Biopolymer composites in electronics (pp. 219–229). Elsevier.Google Scholar
  6. 6.
    Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods (pp. 81–124). Woodhead Publishing.Google Scholar
  7. 7.
    Chatterjee, A. K. (2000). X-ray diffraction. In Handbook of analytical techniques in concrete science and technology (pp. 275–332).CrossRefGoogle Scholar
  8. 8.
    Trivedi, M. K., Nayak, G., Patil, S., Tallapragada, R. M., & Mishra, R. (2015). Impact of biofield treatment on chemical and thermal properties of cellulose and cellulose acetate. Journal of Bioengineering and Biomedical Sciences.  https://doi.org/10.4172/2155-9538.1000162.CrossRefGoogle Scholar
  9. 9.
    Wulandari, W. T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering,107, 012045.  https://doi.org/10.1088/1757-899X/107/1/012045.CrossRefGoogle Scholar
  10. 10.
    Cohuo, S. C. P., Escamilla, G. C., González, A. V., Escamilla, V. V. A. F., & Calderon, J. U. (2018). Production and modification of cellulose nanocrystals from Agave tequilana weber waste and is effect on the melt rheology of PLA. International Journal of Polymer Science.  https://doi.org/10.1155/2018/3567901.CrossRefGoogle Scholar
  11. 11.
    Gupta, K. K., Mishra, P. K., Srivastava, P., Gangwar, M., Nath, G., & Maiti, P. (2013). Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibers. Applied Surface Science,264, 375–382.CrossRefGoogle Scholar
  12. 12.
    Chu, Z., Zhao, T., Li, L., Fan, J., & Qin, Y. (2017). Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials,10, 659.  https://doi.org/10.3390/ma10060659.CrossRefGoogle Scholar
  13. 13.
    Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., Ibrahim, N. A., Rahman, R. A., Jokar, M., et al. (2010). Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. International Journal of Nanomedicine,5, 573–579.CrossRefGoogle Scholar
  14. 14.
    Shuhua, W., Qiaoli, X., Fen, L., Jinming, D., Husheng, J., & Bingshe, X. (2014). Preparation and properties of cellulose-based carbon microsphere/poly (lactic acid) composites. Journal of Composite Materials,48(11), 1297–1302.  https://doi.org/10.1177/0021998313485263.CrossRefGoogle Scholar
  15. 15.
    Rajkumar, M., Meenakshisundaram, N., & Rajendran, V. (2011). Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation. Materials Characterization,62(5), 469–479.CrossRefGoogle Scholar
  16. 16.
    Usha, R., Jaimohan, S. M., Rajaram, A., & Mandal, A. B. (2010). Aggregation and self-assembly of non-enzymatic glycation of collagen in the presence of amino guanidine and aspirin: An in vitro study. International Journal of Biological Macromolecules,47, 402–409.CrossRefGoogle Scholar
  17. 17.
    Chauhan, S., Bansal, M., Khan, G., Yadav, S. K., Singh, A. K., Prakash, P., et al. (2018). Development, optimization and evaluation of curcumin loaded biodegradable crosslinked gelatin film for the effective treatment of periodontitis. Drug Development and Industrial Pharmacy,44(7), 1212–1221.CrossRefGoogle Scholar
  18. 18.
    Lin, S., Chen, L., Huang, L., Cao, S., Luo, X., & Liu, K. (2015). Novel antimicrobial chitosan–cellulose composite films bioconjugated with silver nanoparticles. Industrial Crops and Products,70, 395–403.CrossRefGoogle Scholar
  19. 19.
    Jiang, B., Li, S., Wu, Y., Song, J., Chen, S., Li, X., et al. (2018). Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. CyTA-Journal of Food,16(1), 1045–1054.CrossRefGoogle Scholar
  20. 20.
    Günther, H. (2013). NMR spectroscopy: Basic principles, concepts and applications in chemistry. Wiley.Google Scholar
  21. 21.
    Yin, M., Lin, X., Ren, T., Li, Z., Ren, X., & Huang, T. S. (2018). Cytocompatible quaternized carboxymethyl chitosan/poly(vinyl alcohol) blend film loaded copper for antibacterial application. International Journal of Biological Macromolecules,120, 992–998.CrossRefGoogle Scholar
  22. 22.
    Sun, Z., Li, M., Jin, Z., Gong, Y., An, Q., Tuo, X., et al. (2018). Starch-graft-polyacrylonitrile nanofibers by electrospinning. International Journal of Biological Macromolecules,120, 2552–2559.CrossRefGoogle Scholar
  23. 23.
    Haroon, M., Yu, H., Wang, L., Ullah, R. S., Haq, F., & Teng, L. (2019). Synthesis and characterization of carboxymethyl starch-g-polyacrylic acids and their properties as adsorbents for ammonia and phenol. International Journal of Biological Macromolecules,138, 349–358.CrossRefGoogle Scholar
  24. 24.
    Hao, Y., Chen, Y., Li, Q., & Gao, Q. (2019). Synthesis, characterization and hydrophobicity of esterified waxy potato starch nanocrystals. Industrial Crops & Products,130, 111–117.CrossRefGoogle Scholar
  25. 25.
    Tan, W., Li, Q., Dong, F., Chen, Q., & Guo, Z. (2017). Preparation and characterization of novel cationic chitosan derivatives bearing quaternary ammonium and phosphonium salts and assessment of their antifungal properties. Molecules,22(9), 1438.CrossRefGoogle Scholar
  26. 26.
    Burgess, R. (2012). Understanding nanomedicine, an introductory textbook (1st ed.). Jenny Stanford Publishing. https://doi.org/10.1201/b12299CrossRefGoogle Scholar
  27. 27.
    Haugstad, G. (2012). Atomic force microscopy: Understanding basic modes and advanced applications. Wiley.Google Scholar
  28. 28.
    Eaton, P., & West, P. (2010). Atomic force microscopy. Oxford university press.Google Scholar
  29. 29.
    Yu, H., & Rahim, N. A. A. (Eds.). (2013). Imaging in cellular and tissue engineering. CRC Press.Google Scholar
  30. 30.
    Gaczynska, M., & Osmulski, P. A. (2008). AFM of biological complexes: What can we learn? Current Opinion in Colloid & Interface Science,13(5), 351–367.  https://doi.org/10.1016/j.cocis.2008.01.004.CrossRefGoogle Scholar
  31. 31.
    Bonardd, S., Roble, E., Barandiaran, I., Saldías, C., Leiva, Á., & Kortaberria, G. (2018). Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydrate Polymers,199, 20–30.CrossRefGoogle Scholar
  32. 32.
    Tang, R., Yu, Z., Renneckar, S., & Zhang, Y. (2018). Coupling chitosan and TEMPO-oxidized nanofibrilliated cellulose by electrostatic attraction and chemical reaction. Carbohydrate Polymers,202, 84–90.CrossRefGoogle Scholar
  33. 33.
    Ni, P., Ba, H., Zhao, Ga, Han, Y., Wickramaratne, M. N., Dai, H., et al. (2019). Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids and Surfaces B: Biointerfaces,173, 171–177.CrossRefGoogle Scholar
  34. 34.
    Rhim, J. W. (2004). Physical and mechanical properties of water-resistant sodium alginate films. LWT-Food Science and Technology,37(3), 323–330.CrossRefGoogle Scholar
  35. 35.
    Yang, L., Guo, J., Wu, J., Yang, Y., Zhang, S., Song, J., et al. (2017). Preparation and properties of a thin membrane based on sodium alginate grafting acrylonitrile. RSC Advances7(80), 50626–50633.CrossRefGoogle Scholar
  36. 36.
    Li, J., Chen, C., Wang, X., Gu, Z., & Chen, B. (2011). Novel strategy to fabricate PLA/Au nanocomposites as an efficient drug carrier for human leukemia cells in vitro. Nanoscale Research Letters,6(1), 29.Google Scholar
  37. 37.
    Cernencu, A. I., Lungu, A., Dragusin, D., Serafim, A., Vasile, E., Ionescu, C., et al. (2017). Design of cellulose–alginate films using PEG/NaOH aqueous solution as co-solvent. Cellulose,24(10), 4419–4431.CrossRefGoogle Scholar
  38. 38.
    Keyse, R. (1997). Introduction to scanning transmission electron microscopy (1st ed.). Taylor & Francis group. https://doi.org/10.1201/9780203749890
  39. 39.
    Kumar, S., Krishnakumar, B., Sobral, A. J. F. N., & Koh, J. (2019). Bio-based (chitosan/PVA/ZnO) nanocomposites film: Thermally stable and photoluminescence material for removal of organic dye. Carbohydrate Polymers,205, 559–564.CrossRefGoogle Scholar
  40. 40.
    Upadhyaya, L., Singh, J., Agarwal, V., Pandey, A. C., Verma, S. P., Das, P., et al. (2014). In situ grafted nanostructured ZnO/carboxymethyl cellulose nanocomposites for efficient delivery of curcumin to cancer. Journal of Polymer Research,21, 550.CrossRefGoogle Scholar
  41. 41.
    Perotti, G. F., Tronto, J., Bizeto, M. A., Izumi, C. M. S., Temperini, M. L. A., Lugão, A. B., et al. (2014). Biopolymer-clay nanocomposites: Cassava starch and synthetic clay cast films. Journal of the Brazilian Chemical Society, 25, 320–330.Google Scholar
  42. 42.
    Rath, D., Chahataray, R., & Nayak, P. L. (2013). Synthesis and characterization of conducting polymers multi walled carbon nanotube-Chitosan composites coupled with poly (metachloroaniline). Middle-East Journal of Scientific Research,18(5), 635–641.Google Scholar
  43. 43.
    Agel, M. R., Baghdan, E., Pinnapireddy, S. R., Lehmann, J., Schäfer, J., & Bakowsky, U. (2019). Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids and Surfaces B: Biointerfaces,178, 460–468.CrossRefGoogle Scholar
  44. 44.
    Tiwari, N., Nawale, L., Sarkar, D., & Badiger, M. (2017). Carboxymethyl cellulose-grafted mesoporous silica hybrid nanogels for enhanced cellular uptake and release of curcumin. Gels,3(1), 8.CrossRefGoogle Scholar
  45. 45.
    Ni, P., Bi, H., Zhao, G., Han, Y., Wickramaratne, M. N., Dai, H., et al. (2019). Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids and Surfaces B: Biointerfaces,173, 171–177.CrossRefGoogle Scholar
  46. 46.
    Fujimoto, J. G., & Farkas, D. (2009). Biomedical optical imaging. Oxford University Press.Google Scholar
  47. 47.
    Herman, B., & Lemasters, J. J. (Eds.). (2012). Optical microscopy: Emerging methods and applications. Elsevier.Google Scholar
  48. 48.
    Di Gianfrancesco, A. (2017). Technologies for chemical analyses, microstructural and inspection investigations. In Materials for ultra-supercritical and advanced ultra-supercritical power plants (pp. 197–245). Woodhead Publishing.Google Scholar
  49. 49.
    Ali, A., Yu, L., Liu, H., Khalid, S., Meng, L., & Chen, L. (2017). Preparation and characterization of starch-based composite films reinforced by corn and wheat hulls. Journal of Applied Polymer Science,134(32), 45159.CrossRefGoogle Scholar
  50. 50.
    Ashok, A., Reddy, K. O., Tian, F. H., & Rajulu, A. V. (2019). Preparation and properties of cellulose/Thespesia lampas microfiber composite films. International Journal of Biological Macromolecules,127, 153–158.CrossRefGoogle Scholar
  51. 51.
    Venkatesana, J., Ryu, B., Sudha, P. N., & Kim, S. (2012). Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering. International Journal of Biological Macromolecules,50, 393–402.CrossRefGoogle Scholar
  52. 52.
    Qiu, T. Y., Song, M., & Zhao, L. G. (2016). Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends. Mechanics of Advanced Materials and Modern Processes,2(1), 7.CrossRefGoogle Scholar
  53. 53.
    Xu, A., Xu, J., Xiao, L., Li, Z., Xiao, Y., Dargusch, M., et al. (2018). Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Advances,8, 16503–16512.CrossRefGoogle Scholar
  54. 54.
    Di Gianfrancesco, A. (2017). Technologies for chemical analyses, microstructural and inspection investigations. In Materials for ultra-supercritical and advanced ultra-supercritical power plants (pp. 197–245). Woodhead Publishing. 10.1016/b978-0-08-100552-1.00008-7.Google Scholar
  55. 55.
    Yang, Z., Yu, W., Xu, D., Guo, L., Wu, F., & Xu, X. (2019). Impact of frozen storage on whole wheat starch and its A-Type and B-Type granules isolated from frozen dough. Carbohydrate polymers,223, 115142.CrossRefGoogle Scholar
  56. 56.
    Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan–Alginate hybrid scaffolds for bone tissue engineering. Biomaterials,26(18), 3919–3928.CrossRefGoogle Scholar
  57. 57.
    Sujka, M., & Jamroz, J. (2013). Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids,31(2), 413–419.CrossRefGoogle Scholar
  58. 58.
    Moshaverinia, A., Chen, C., Akiyama, K., Ansari, S., Xu, X., Chee, W. W., Schricker, S. R., & Shi, S. (2012). Alginate hydrogel as a promising scaffold for dental-derived stem cells: An in vitro study. Journal of Materials Science: Materials in Medicine,23(12), 3041–3051.Google Scholar
  59. 59.
    Liu, Y., Liu, A., Ibrahim, S. A., Yang, H., & Huang, W. (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules,111, 717–721.CrossRefGoogle Scholar
  60. 60.
    Wasserman, L. A., Papakhin, A. A., Borodina, Z. M., Krivandin, A. V., Sergeev, A. I., & Tarasov, V. F. (2019). Some physico-chemical and thermodynamic characteristics of maize starches hydrolyzed by glucoamylase. Carbohydrate Polymers,212, 260–269.CrossRefGoogle Scholar
  61. 61.
    Griffiths, P. R., & De Haseth, J. A. (2007). Fourier transform infrared spectrometry. Wiley. 10.1002/047010631xGoogle Scholar
  62. 62.
    Huth, F., Govyadinov, A., Amarie, S., Nuansing, W., Keilmann, F., & Hillenbrand, R. (2012). Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Letters,12(8), 3973–3978.  https://doi.org/10.1021/nl301159v.CrossRefGoogle Scholar
  63. 63.
    Materazzi, S. (1997). Thermogravimetry–infrared spectroscopy (TG-FTIR) coupled analysis. Applied Spectroscopy Reviews,32(4), 385–404.  https://doi.org/10.1080/05704929708003320.CrossRefGoogle Scholar
  64. 64.
    Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Sena Neto, A. R., Marques, A. C. P., Marconcini, J. M., et al. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458.CrossRefGoogle Scholar
  65. 65.
    Kulig, D., Zimoch-Korzycka, A., Jarmoluk, A., & Marycz, K. (2016). Study on Alginate-Chitosan complex formed with different polymers ratio. Polymers,8(5), 167.  https://doi.org/10.3390/polym8050167.CrossRefGoogle Scholar
  66. 66.
    Behera, S. S., Das, U., Kumar, A., Bissoyi, A., & Singh, A. K. (2017). Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. International Journal of Biological Macromolecules, 98, 329–340.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sabarish Radoor
    • 1
  • Jasila Karayil
    • 2
  • Aswathy Jayakumar
    • 3
  • E. K. Radhakrishnan
    • 3
  • Lakshmanan Muthulakshmi
    • 4
  • Sanjay Mavinkere Rangappa
    • 1
  • Suchart Siengchin
    • 1
  • Jyotishkumar Parameswaranpillai
    • 5
    Email author
  1. 1.Department of Mechanical and Process EngineeringThe Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North BangkokBangsue, BangkokThailand
  2. 2.Department of ChemistryGovernment Polytechnic Women’s CollegeCalicutIndia
  3. 3.School of BiosciencesMahatma Gandhi University, P.D. Hills (P.O.)KottayamIndia
  4. 4.Department of Materials ScienceMadurai Kamaraj UniversityMaduraiIndia
  5. 5.Center of Innovation in Design and Engineering for ManufacturingKing Mongkut’s University of Technology North BangkokBangsue, BangkokThailand

Personalised recommendations