Effect of Glass and Banana Fiber Mat Orientation and Number of Layers on Mechanical Properties of Hybrid Composites

  • T. P. SathishkumarEmail author
  • S. Ramakrishnan
  • P. Navaneethakrishnan


In this work, the effects of fiber mat orientation and number of layers on the tensile, flexural and impact properties of glass fiber random (SGFR) and banana fiber woven (BFW) mat reinforced epoxy laminated hybrid composites are investigated experimentally based on ASTM standards. The hybrid composites are prepared by compression molding process and results are compared with pure glass and banana fiber mat epoxy laminated composites. Results shows that introducing of SGFR mat in-between the BFW mats in the epoxy laminated composites reduces the overall weight of the composites and the mechanical properties of the hybrid composites are varied with BFW mat orientation. Moreover, the mechanical properties are varied by varying the number of layers in hybrid composites. The hybrid composites with four layers of glass and three layers of banana (i.e. G4B3) are showing higher tensile, flexural and impact properties compared to G3B2 composites. Also, by varying orientation of banana fiber woven mat, the maximum mechanical properties obtained for composites containing G4B3 layering pattern at 0° and 30° orientations.


  1. 1.
    Song, J. H. (2015). Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers. Composites Part B, 79, 61–66.CrossRefGoogle Scholar
  2. 2.
    Lima, A. V. N. A., Cardoso, J. L., & Lobo, C. J. S. (2019). Research on hybrid sisal/glass composites: A review. Journal of Reinforced Plastics and Composites. Scholar
  3. 3.
    Sarasini, F., Tirillo, J., Valente, M., Valente, T., Cioffi, S., Iannace, S., & Sorrentino, L. (2013). Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Composites: Part A, 47, 109–123.Google Scholar
  4. 4.
    Valenca, S.L., Griza, S., Gomes de Oliveira, V., Sussuchi, E. M., & Carvalho de Cunha, F. G. (2015). Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric. Composites: Part B: 70, 1–8.Google Scholar
  5. 5.
    Abd El-baky, M. A., & Attia, M. A. (2018). Water absorption effect on the in-plane shear properties of jute–glass–carbon reinforced composites using Iosipescu test. Journal of Composite Materials. Scholar
  6. 6.
    Athith, D., Sanjay, M. R., Yashas Gowda, T. G., Madhu, P., Arpitha, G. R., Yogesha, B., & Omri, M. A. (2017). Effect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. Journal of Industrial Textiles, 48(4), 713–737.Google Scholar
  7. 7.
    Hanan, F., Jawaid, M., & Tahir, P. M. (2018). Mechanical performance of oil palm/kenaf fiber-reinforced epoxy-based bilayer hybrid composites. Journal of Natural Fibers. Scholar
  8. 8.
    Jothibasu, S., Mohanamurugan, S., Vijay, R., Lenin Singaravelu, D., Vinod, A., & Sanjay, M. R. (2018). Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. Journal of Industrial Textiles. Scholar
  9. 9.
    Sezgin, H., & Berkalp, O. B. (2016). The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites. Journal of Industrial Textiles, 47(3), 283–296.CrossRefGoogle Scholar
  10. 10.
    Dong, C. (2016). Uncertainties in flexural strength of carbon/glass fibre reinforced hybrid epoxy composites. Composites Part B, 98, 176–181.CrossRefGoogle Scholar
  11. 11.
    Praveen Kumar, A., & Nalla, M. M. (2018). A comparative analysis on tensile strength of dry and moisture absorbed hybrid kenaf/glass polymer composites. Journal of Industrial Textiles, 47(8), 2050–2073.CrossRefGoogle Scholar
  12. 12.
    Selver, E., Ucar, N., & Gulmez, T. (2017). Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. Journal of Industrial Textiles, 48(2), 494–520.CrossRefGoogle Scholar
  13. 13.
    Yang, Y., Zhao, D., Xu, J., Dong, Y., Ma, Y., Qin, X., et al. (2017). Mechanical and optical properties of silk fabric/glass fiber mat composites: An artistic application of composites. Textile Research Journal, 88(8), 932–945.CrossRefGoogle Scholar
  14. 14.
    Reis, P. N. B., Ferreira, J. A. M., Antunes, F. V., & Costa, J. D. M. (2007). Flexural behaviour of hybrid laminated composites. Composites: Part A, 38, 1612–1620.Google Scholar
  15. 15.
    Sathishkumar, T. P., Naveen, J., & Satheeshkumar, S. (2014). Hybrid fiber reinforced polymer composites—A review. Journal of Reinforced Plastics and Composites, 33(5), 454–471.CrossRefGoogle Scholar
  16. 16.
    Morye, S. S., & Wool, R. P. (2005). Mechanical properties of glass/flax hybrid composites based on a novel modified soybean oil matrix material. Polymer Composites, 26(4), 407–416.CrossRefGoogle Scholar
  17. 17.
    Santulli, C. (2005). Impact properties of glass/plant fibre hybrid laminates. Journal of Material Science, 42, 3699–3707.CrossRefGoogle Scholar
  18. 18.
    Amico, S. C., Angrizani, C. C., & Drummon, M. L. (2010). Influence of the stacking sequence on the mechanical properties of glass/sisal hybrid composites. Journal of Reinforced Plastics and Composites, 29(2), 179–189.CrossRefGoogle Scholar
  19. 19.
    John, K., & Venkata, N. S. (2007). Chemical resistance of sisal/glass reinforced unsaturated polyester hybrid composites. Journal of Reinforced Plastics and Composites, 26(4), 373–376.CrossRefGoogle Scholar
  20. 20.
    Venkateshwaran, N., ElayaPerumal, A., Alavudeen, A., & Thiruchitrambalam, M. (2011). Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Materials & Design, 32(7), 4017–4021.CrossRefGoogle Scholar
  21. 21.
    Yahaya, R., Sapuan, S., Jawaid, M., Leman, Z., & Zainudin, E. (2016). Water absorption behaviour and impact strength of kenaf-kevlar reinforced epoxy hybrid composites. Advanced Composites Letters, 25(4), 98.CrossRefGoogle Scholar
  22. 22.
    Vieira, J. D. S., Lopes, F. P., de Moraes, Y. M., Monteiro, S. N., Margem, F. M., Margem, J. I., & Souza, D. (2018). Comparative mechanical analysis of epoxy composite reinforced with malva/jute hybrid fabric by izod and charpy impact test. In Proceedings of the TMS Annual Meeting & Exhibition, pp. 177–183.Google Scholar
  23. 23.
    Siddika, S., Mansura, F., & Hasan, M. (2013). Physico-mechanical properties of jute-coir fiber reinforced hybrid polypropylene composites. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 7(1), 60–64.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • T. P. Sathishkumar
    • 1
    Email author
  • S. Ramakrishnan
    • 1
  • P. Navaneethakrishnan
    • 1
  1. 1.Faculty of Mechanical Engineering, School of Building and Mechanical SciencesKongu Engineering CollegePerundurai, ErodeIndia

Personalised recommendations