Advertisement

Cellulose Based Biomaterials: Benefits and Challenges

  • Faiza Sharif
  • Nawshad MuhammadEmail author
  • Tahera Zafar
Chapter
  • 32 Downloads

Abstract

Cellulose is amongst the most inexhaustible natural source of polymers available on the globe. It is present in trees, plants, fruits, barks and leaves in the form of key structural element of the cell wall of plant tissues. It contains lignin and hemicellulose as additional products when isolated, which need to be removed to obtain nanofibrous cellulose. It has numerous applications in paper, leather, cosmetic, pharmaceutical, food and packaging. Bacterial cellulose on the other hand is a micro fibrous membrane made by bacteria in low pH conditions at air liquid interphase. Bacterial cellulose (BC) is endowed with distinctive properties, for instance, ability to retain water, ability to mould, high rate of crystallinity, high tensile strength. These striking physical characteristics arise from its distinctive nanostructure, which consists of a three-dimensional network made of linear b-1, 4-glucan chains bonded together by hydrogen interactions. This structure is organized as twining ribbons made of microfibrillar bundles. These properties make BC an exceptional biomaterial which can be use in various ways in biomedical field. Although highly beneficial for biomedical applications cellulose does present some drawbacks. Basically, nanofibers of plant-based cellulose is isolated by acid hydrolysis and mechanical defibrillation, both processes have their own challenges similarly bacterial cellulose is naturally synthesized by bacteria which is a slow process and may make it difficult to commercially viable for biomedical application.

Keywords

Cellulose Bacterial cellulose Cellulose based biomaterials Biomedical cellulose 

Notes

Acknowledgement

This work supported Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS University Islamabad, Lahore Campus, Pakistan and NRPU research project 4146.

References

  1. 1.
    Wang, S., et al. (2016). Modification and potential application of short-chain-length polyhydroxyalkanoate (SCL-PHA). Polymers, 8(8), 273.CrossRefGoogle Scholar
  2. 2.
    Nithin, B., & Goel, S. (2017). Degradation of plastics. In Advances in solid and hazardous waste management (pp. 235–247). Springer.Google Scholar
  3. 3.
    GQ, C. (2010). Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. In C. GQ (Ed.), Microbiology monographs. Berlin, Heidelberg: Springer.Google Scholar
  4. 4.
    Song, J. H., et al. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 2127–2139.CrossRefGoogle Scholar
  5. 5.
    Schröpfer, S. B., et al. (2015). Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate) in soil. Polímeros, 25, 154–160.CrossRefGoogle Scholar
  6. 6.
    Ng, H.-M., et al. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 75, 176–200.CrossRefGoogle Scholar
  7. 7.
    Man, Z., et al. (2011). Preparation of cellulose nanocrystals using an ionic liquid. Journal of Polymers and the Environment, 19(3), 726–731.CrossRefGoogle Scholar
  8. 8.
    Sarwono, A., et al. (2017). A new approach of probe sonication assisted ionic liquid conversion of glucose, cellulose and biomass into 5-hydroxymethylfurfural. Ultrasonics Sonochemistry, 37, 310–319.CrossRefGoogle Scholar
  9. 9.
    Kim, J.-H., et al. (2015). Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 197–213.CrossRefGoogle Scholar
  10. 10.
    Muhammad, N., et al. (2015). Dissolution and separation of wood biopolymers using ionic liquids. ChemBioEng Reviews, 2(4), 257–278.CrossRefGoogle Scholar
  11. 11.
    Jamshaid, A., et al. (2019). Fabrication and evaluation of cellulose-alginate-hydroxyapatite beads for the removal of heavy metal ions from Aqueous Solutions. In Zeitschrift für Physikalische Chemie (p. 1351).CrossRefGoogle Scholar
  12. 12.
    Iwamoto, S., Nakagaito, A., & Yano, H. (2007). Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A, 89(2), 461–466.CrossRefGoogle Scholar
  13. 13.
    Miyamoto, T., et al. (1989). Tissue biocompatibility of cellulose and its derivatives. Journal of Biomedical Materials Research, 23(1), 125–133.CrossRefGoogle Scholar
  14. 14.
    Klemm, D., et al. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50(24), 5438–5466.CrossRefGoogle Scholar
  15. 15.
    Mohite, B. V., & Patil, S. V. (2014). A novel biomaterial: Bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry, 61(2), 101–110.CrossRefGoogle Scholar
  16. 16.
    Klemm, D., et al. (2009). Nanocellulose materials–different cellulose, different functionality. In Macromolecular symposia. Wiley Online Library.Google Scholar
  17. 17.
    Ummartyotin, S., & Manuspiya, H. (2015). A critical review on cellulose: From fundamental to an approach on sensor technology. Renewable and Sustainable Energy Reviews, 41, 402–412.CrossRefGoogle Scholar
  18. 18.
    Hult, E.-L., Larsson, P., & Iversen, T. (2001). Cellulose fibril aggregation—An inherent property of kraft pulps. Polymer, 42(8), 3309–3314.CrossRefGoogle Scholar
  19. 19.
    Jamshaid, A., et al. (2017). Cellulose-based materials for the removal of heavy metals from wastewater—An overview. ChemBioEng Reviews, 4(4), 240–256.CrossRefGoogle Scholar
  20. 20.
    Nakagaito, A., & Yano, H. (2004). The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Applied Physics A, 78(4), 547–552.CrossRefGoogle Scholar
  21. 21.
    Wu, C. (2010). Production and characterization of optically transparent nanocomposite film. Faculty of Forestry.Google Scholar
  22. 22.
    Sain, M. M., & Bhatnagar, A. (2008). Manufacturing process of cellulose nanofibers from renewable feed stocks. Google Patents.Google Scholar
  23. 23.
    Juntaro, J. (2009). Environmentally friendly hierarchical composites. Imperial College London.Google Scholar
  24. 24.
    Klemm, D., et al. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.CrossRefGoogle Scholar
  25. 25.
    Barud, H., et al. (2008). Bacterial cellulose–silica organic–inorganic hybrids. Journal of Sol-Gel Science and Technology, 46(3), 363–367.CrossRefGoogle Scholar
  26. 26.
    Kramer, F., et al. (2006). Nanocellulose polymer composites as innovative pool for (bio) material development. In Macromolecular symposia. Wiley Online Library.Google Scholar
  27. 27.
    Islam, M. T., et al. (2014). Preparation of nanocellulose: A review. AATCC Journal of Research, 1(5), 17–23.CrossRefGoogle Scholar
  28. 28.
    Azizi Samir, M. A. S., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612–626.Google Scholar
  29. 29.
    Revol, J.-F., et al. (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 14(3), 170–172.CrossRefGoogle Scholar
  30. 30.
    Bondeson, D., Mathew, A., & Oksman, K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13(2), 171.CrossRefGoogle Scholar
  31. 31.
    Zimmermann, T., Bordeanu, N., & Strub, E. (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 79(4), 1086–1093.CrossRefGoogle Scholar
  32. 32.
    Macleod, G. S., Collett, J. H., & Fell, J. T. (1999). The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release. Journal of Controlled Release, 58(3), 303–310.CrossRefGoogle Scholar
  33. 33.
    Nagy, G., et al. (1995). Use of hydroxy-propyl-methyl cellulose (methocel) and carboxy-methyl cellulose containing artificial saliva in the symptomatic treatment of xerostomia. Fogorvosi Szemle, 88(9), 299–304.Google Scholar
  34. 34.
    Khalil, H. A., et al. (2015). Cellulosic nanocomposites from natural fibers for medical applications: A review. In Handbook of polymer nanocomposites. Processing, performance and application (pp. 475–511). Springer.Google Scholar
  35. 35.
    Koob, S. P. (1982). The instability of cellulose nitrate adhesives. The Conservator, 6(1), 31–34.CrossRefGoogle Scholar
  36. 36.
    Floury, J., et al. (2003). Effect of high pressure homogenisation on methylcellulose as food emulsifier. Journal of Food Engineering, 58(3), 227–238.CrossRefGoogle Scholar
  37. 37.
    Colvin, J.R. (1980). The biosynthesis of cellulose. In Carbohydrates: Structure and function (pp. 543–570). Elsevier.Google Scholar
  38. 38.
    Kwak, M.H., et al. (2015). Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohydrate Polymers, 122, 387–398.CrossRefGoogle Scholar
  39. 39.
    Benson, R., et al. (2011). Development of bacterial cellulose nanocomposites. MRS Online Proceedings Library Archive, 1312.Google Scholar
  40. 40.
    Czaja, W., Romanovicz, D., & Malcolm Brown, R. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11(3–4), 403–411.Google Scholar
  41. 41.
    Bodin, A., et al. (2007). Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnology and Bioengineering, 97(2), 425–434.CrossRefGoogle Scholar
  42. 42.
    Czaja, W. K., et al. (2007). The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8(1), 1–12.CrossRefGoogle Scholar
  43. 43.
    Gatenholm, P., & Klemm, D. (2010). Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bulletin, 35(3), 208–213.CrossRefGoogle Scholar
  44. 44.
    Nakagaito, A., Iwamoto, S., & Yano, H. (2005). Bacterial cellulose: The ultimate nano-scalar cellulose morphology for the production of high-strength composites. Applied Physics A, 80(1), 93–97.CrossRefGoogle Scholar
  45. 45.
    Moosavi-Nasab, M., & Yousefi, A. (2011). Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iranian Journal of Biotechnology, 9(2), 94–101.Google Scholar
  46. 46.
    Byrom, D. (1991). Biomaterials: Novel materials from biological sources. Springer.Google Scholar
  47. 47.
    Cannon, R. E., & Anderson, S. M. (1991). Biogenesis of bacterial cellulose. Critical Reviews in Microbiology, 17(6), 435–447.CrossRefGoogle Scholar
  48. 48.
    Fiedler, S., Füssel, M., & Sattler, K. (1989). Gewinnung und Anwendung von Bakteriencellulose: I. Übersicht zum Stand der Forschung und Untersuchungen zur Fermentationskinetik. Zentralblatt für Mikrobiologie, 144(7), 473–484.Google Scholar
  49. 49.
    Matthysse, A. (1983). Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. Journal of Bacteriology, 154(2), 906–915.CrossRefGoogle Scholar
  50. 50.
    Canale-Parola, E. (1970). Biology of the sugar-fermenting Sarcinae. Bacterioloical Reviews, 34(1), 82.CrossRefGoogle Scholar
  51. 51.
    Huang, Y., et al. (2014). Recent advances in bacterial cellulose. Cellulose, 21(1), 1–30.CrossRefGoogle Scholar
  52. 52.
    Somerville, C. (2006). Cellulose synthesis in higher plants. Annual Review of Cell and Developmental Biology, 22, 53–78.CrossRefGoogle Scholar
  53. 53.
    Putra, A., et al. (2008). Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer, 49(7), 1885–1891.CrossRefGoogle Scholar
  54. 54.
    Brown, R. M., Jr. (2004). Cellulose structure and biosynthesis: What is in store for the 21st century? Journal of Polymer Science Part A: Polymer Chemistry, 42(3), 487–495.CrossRefGoogle Scholar
  55. 55.
    Shah, J., & Brown, R. M. (2005). Towards electronic paper displays made from microbial cellulose. Applied Microbiology and Biotechnology, 66(4), 352–355.CrossRefGoogle Scholar
  56. 56.
    Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59(1–3), 101–106.CrossRefGoogle Scholar
  57. 57.
    White, D. G., & Brown, R. M., Jr. (1989). Prospects for the commercialization of the biosynthesis of microbial cellulose. Cellulose and Wood-Chemistry and Technology, 573, 573–590.Google Scholar
  58. 58.
    Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345.Google Scholar
  59. 59.
    Ishikawa, A., et al. (1995). Increase in cellulose production by sulfaguanidine-resistant mutants derived from Acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology, and Biochemistry, 59(12), 2259–2262.CrossRefGoogle Scholar
  60. 60.
    Masaoka, S., Ohe, T., & Sakota, N. (1993). Production of cellulose from glucose by Acetobacter xylinum. Journal of Fermentation and Bioengineering, 75(1), 18–22.CrossRefGoogle Scholar
  61. 61.
    Krystynowicz, A., et al. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 29(4), 189–195.CrossRefGoogle Scholar
  62. 62.
    Watanabe, K., et al. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose, 5(3), 187–200.CrossRefGoogle Scholar
  63. 63.
    Dudman, W. (1960). Cellulose production by Acetobacter strains in submerged culture. Microbiology, 22(1), 25–39.Google Scholar
  64. 64.
    Bungay, III, H. R., & Serafica, G. C. (1999). Production of microbial cellulose using a rotating disk film bioreactor. Google Patents.Google Scholar
  65. 65.
    Moniri, M., et al. (2017). Production and status of bacterial cellulose in biomedical engineering. Nanomaterials, 7(9), 257.CrossRefGoogle Scholar
  66. 66.
    Shah, N., et al. (2013). Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydrate Polymers, 98(2), 1585–1598.CrossRefGoogle Scholar
  67. 67.
    Lee, K.-Y., et al. (2012). Hierarchical composites reinforced with robust short sisal fibre preforms utilising bacterial cellulose as binder. Composites Science and Technology, 72(13), 1479–1486.CrossRefGoogle Scholar
  68. 68.
    Lestari, P., et al. (2014). Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan Journal of Biological Sciences, 147(1570), 1–6.Google Scholar
  69. 69.
    Yamanaka, S., et al. (1989). The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science, 24(9), 3141–3145.CrossRefGoogle Scholar
  70. 70.
    Wan, Y., et al. (2006). Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Composites Science and Technology, 66(11–12), 1825–1832.CrossRefGoogle Scholar
  71. 71.
    Nogi, M., et al. (2006). Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Applied Physics Letters, 88(13), 133124.CrossRefGoogle Scholar
  72. 72.
    Guhados, G., Wan, W., & Hutter, J. L. (2005). Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir, 21(14), 6642–6646.CrossRefGoogle Scholar
  73. 73.
    Evans, B. R., et al. (2003). Palladium-bacterial cellulose membranes for fuel cells. Biosensors and Bioelectronics, 18(7), 917–923.CrossRefGoogle Scholar
  74. 74.
    Yan, Z., et al. (2008). Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydrate Polymers, 74(3), 659–665.CrossRefGoogle Scholar
  75. 75.
    Pandey, L. K., Saxena, C., & Dubey, V. (2005). Studies on pervaporative characteristics of bacterial cellulose membrane. Separation and Purification Technology, 42(3), 213–218.CrossRefGoogle Scholar
  76. 76.
    Ishida, T., et al. (2003). Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnology and Bioengineering, 83(4), 474–478.CrossRefGoogle Scholar
  77. 77.
    Klemm, D., et al. (2001). Bacterial synthesized cellulose—Artificial blood vessels for microsurgery. Progress in Polymer Science, 26(9), 1561–1603.CrossRefGoogle Scholar
  78. 78.
    Helenius, G., et al. (2006). In vivo biocompatibility of bacterial cellulose. Journal of Biomedical Materials Research Part A: Official Journal of the Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 76(2), 431–438.CrossRefGoogle Scholar
  79. 79.
    Sokolnicki, A. M., et al. (2006). Permeability of bacterial cellulose membranes. Journal of Membrane Science, 272(1–2), 15–27.CrossRefGoogle Scholar
  80. 80.
    Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose—A masterpiece of nature's arts. Journal of Materials Science, 35(2), 261–270.CrossRefGoogle Scholar
  81. 81.
    Sukjoon, Y., & Jeffery, S. (2010). Composites, enzyme-assisted preparation of fibrillated cellulose fibers and its effect on physical and mechanical properties of paper sheet composites. Industrial and Engineering Chemistry Research, 49, 2161–2168.CrossRefGoogle Scholar
  82. 82.
    Turbak, A.F., Snyder, F. W., & Sandberg, K. R. (1983). Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science: Applied Polymer Symposium (United States). Shelton, WA: ITT Rayonier Inc.Google Scholar
  83. 83.
    Nishi, Y., et al. (1990). The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science, 25(6), 2997–3001.CrossRefGoogle Scholar
  84. 84.
    Stephens, R. S., Westland, J. A., Neogi, A. N. (1990). Method of using bacterial cellulose as a dietary fiber component. Google Patents.Google Scholar
  85. 85.
    Barud, H., et al. (2007). Thermal characterization of bacterial cellulose–phosphate composite membranes. Journal of Thermal Analysis and Calorimetry, 87(3), 815–818.CrossRefGoogle Scholar
  86. 86.
    Czaja, W., et al. (2006). Microbial cellulose—The natural power to heal wounds. Biomaterials, 27(2), 145–151.CrossRefGoogle Scholar
  87. 87.
    Czaja, W., et al. (2007). Biomedical applications of microbial cellulose in burn wound recovery. In Cellulose: Molecular and structural biology (pp. 307–321). Springer.Google Scholar
  88. 88.
    Lopes, T. D., et al. (2014). Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. International Journal of Biological Macromolecules, 67, 401–408.CrossRefGoogle Scholar
  89. 89.
    Fontana, J., et al. (1990). Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology, 24(1), 253–264.CrossRefGoogle Scholar
  90. 90.
    Reese, E. T., Siu, R. G., & Levinson, H. S. (1950). The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of Bacteriology, 59(4), 485.CrossRefGoogle Scholar
  91. 91.
    Rejeb, S. B., et al. (1998). Functionalization of nitrocellulose membranes using ammonia plasma for the covalent attachment of antibodies for use in membrane-based immunoassays. Analytica Chimica Acta, 376(1), 133–138.CrossRefGoogle Scholar
  92. 92.
    Tammelin, T., et al. (2006). Preparation of Langmuir/Blodgett-cellulose surfaces by using horizontal dipping procedure. Application for polyelectrolyte adsorption studies performed with QCM-D. Cellulose, 13(5), 519.CrossRefGoogle Scholar
  93. 93.
    Lou, Z. (2016). Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial. Brazilian Journal of Otorhinolaryngology, 82(5), 618–619.CrossRefGoogle Scholar
  94. 94.
    Wei, B., Yang, G., & Hong, F. (2011). Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydrate Polymers, 84(1), 533–538.CrossRefGoogle Scholar
  95. 95.
    Dutton, J. J. (1991). Coralline hydroxyapatite as an ocular implant. Ophthalmology, 98(3), 370–377.CrossRefGoogle Scholar
  96. 96.
    Goncalves, S., et al. (2015). Bacterial cellulose as a support for the growth of retinal pigment epithelium. Biomacromolecules, 16(4), 1341–1351.CrossRefGoogle Scholar
  97. 97.
    Mohan, T., et al. (2012). Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter, 8(38), 9807–9815.CrossRefGoogle Scholar
  98. 98.
    Lee, K. Y., et al. (2014). More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience, 14(1), 10–32.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Interdisciplinary Research Centre in Biomedical MaterialsCOMSATS University Islamabad, Lahore CampusLahorePakistan
  2. 2.Department of Science of Dental Materialsde‘Montmorency College of DentistryLahorePakistan

Personalised recommendations