Advertisement

The Ions

  • Vera M. SchäferEmail author
Chapter
  • 20 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The typical choice of ion for trapped ion quantum computing are earth-alkalis, volatile metals or lanthanides with a full s-orbital. Thus, after single ionization, one loosely bound electron remains in the outermost shell in a hydrogen-like configuration. Further criteria are fundamental limits for errors and technical constraints. When using several species in one trap the compatibility of the species is also relevant.

References

  1. 1.
    Noek R et al (2013) High speed, high fidelity detection of an atomic hyperfine qubit. Opt Lett 38:4735–4738. ISSN: 0146-9592Google Scholar
  2. 2.
    Harty TP (2013) High-fidelity microwave-driven quantum logic in intermediatefield 43Ca+ PhD thesis (University of Oxford, 2013)Google Scholar
  3. 3.
    Ozeri R et al (2007) Errors in trapped-ion quantum gates due to spontaneous photon scattering. Phys Rev A 75:042329. ISSN: 1050-2947Google Scholar
  4. 4.
    Colombe Y, Slichter DH, Wilson AC, Leibfried D, Wineland DJ (2014) Single-mode optical fiber for high-power, low-loss UV transmission. Opt Express 22:19783-19793. ISSN: 1094-4087Google Scholar
  5. 5.
    Gulde S et al (2001) Simple and efficient photo-ionization loading of ions for precision ion-trapping experiments. Appl Phys B: Lasers Opt 73:861-863. ISSN: 09462171Google Scholar
  6. 6.
    Lucas DM et al (2004) Isotope-selective photoionization for calcium ion trapping. Phys Rev A 69:012711. ISSN: 1050-2947Google Scholar
  7. 7.
    Kramida A, Ralchenko Y, Reader J (2017) NIST Atomic Spectra Database (ver. 5.5.1) 2017. https://physics.nist.gov/asd (2017)
  8. 8.
    Harty TP (2014) et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys Rev Lett 113:220501. ISSN: 0031-9007Google Scholar
  9. 9.
    Szwer D (2010) High fidelity readout and protection of a 43Ca+ trapped ion qubit PhD thesis (University of Oxford, 2010). papers://d311e016-dabd-41c6-98d5-71ce9eddf36c/Paper/p1856Google Scholar
  10. 10.
    Woodgate GK, Elementary atomic structure (Oxford University Press, London UK)Google Scholar
  11. 11.
    Arbes F, Benzing M, Gudjons T, Kurth F, Werth G (1994) Precise determination of the ground state hyperfine structure splitting of 43Ca II. Zeitschrift für Physik D 31:27–30. ISSN: 0178-7683Google Scholar
  12. 12.
    Tommaseo G et al (2003) The gJ-factor in the ground state of Ca+. Eur Phys Jo D 25:113-121. ISSN: 14346060Google Scholar
  13. 13.
    Harty TP et al (2016) High-fidelity trapped-ion quantum logic using near-field microwaves. Phys Rev Lett 117: 140501. ISSN: 10797114Google Scholar
  14. 14.
    Allcock DTC et al (2016) Dark-resonance Doppler cooling and high fluorescence in trapped Ca-43 ions at intermediate magnetic field. New J Phys 18Google Scholar
  15. 15.
    Wineland DJ, Itano WM (1979) Laser cooling of atoms. Phys Rev A 20:1521–1540. ISSN: 10502947Google Scholar
  16. 16.
    Leibfried D, Blatt R, Monroe C, Wineland D (2003) Quantum dynamics of single trapped ions. Rev Modern Phys 75:281-324. ISSN: 00346861Google Scholar
  17. 17.
    Webster S, Raman sideband cooling and coherent manipulation of trapped ions PhD thesis (University of Oxford, 2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Clarendon Laboratory, Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations