Skip to main content

QTL Mapping for Drought Stress Tolerance in Plants

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Drought tolerance is a significant quantitative trait with many phenotypes and is often complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperature, nutrition deficiencies and toxicity, may challenge crops at the same time; therefore, the cultivation of drought resistance is very complicated. Interdisciplinary researchers have been trying to use various methods to analyze and understand the mechanisms of plant tolerance to drought stress. However, the limited success of molecular breeding and physiological approaches suggests that we need to rethink our strategies. Recent genetic techniques and genomics tools, coupled with advances in breeding methods and precise phenotypes, are likely to reveal candidate genes and metabolic pathways for drought tolerance in crops. In order to update the analysis methods of drought resistance, this chapter reviewed the latest research progress on precise phenotypes of plant physiology in response to drought. Finally, according to the physiological/morphological and molecular mechanism of drought-resistant parent lines, a strategy of selecting specific environment and making suitable germplasm adapt to the environment was proposed. This chapter mainly involves use of quantitative trait locus (QTL) analysis for traits that are related to drought stress. In this article, we briefly review the available literature on QTL analyses in wheat for traits, which respond to drought/water stress. The outlook for future research in this area and the possible approaches for utilizing the available information on genetics of drought tolerance for wheat breeding are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman CJ (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Khatib K, Paulsen G-M (1990) Photosynthesis and productivity during high temperature stress of wheat genotypes from major world regions. Crop Sci 30:1127–1132

    Article  Google Scholar 

  • Al-Khatib K, Paulsen G-M (1999) High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Sci 39:119–125

    Article  Google Scholar 

  • Anjum S-A, Tanveer M, Ashraf U, Hussain S, Shahzad B, Khan I, Wang L (2016) Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ Sci Pollut Res 23(17):17132–17141

    Article  CAS  Google Scholar 

  • Anjum S-A, Ashraf U, Tanveer M, Khan I, Hussain S, Zohaib A, Abbas F, Saleem M-F, Wang L (2017a) Drought tolerance in three maize cultivars is related to differential osmolyte accumulation, antioxidant defense system, and oxidative damage. Front Plant Sci 8:69–

    Google Scholar 

  • Anjum S-A, Ashraf U, Zohaib A, Tanveer M, Naeem M, Ali I, Tabassum T, Nazir U (2017b) Growth and development responses of crop plants under drought stress: a review. Zemdirbyste 104(3):267–276

    Article  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Bankole F, Menkir A, Olaoye G, Crossa J, Hearne S, Unachukwu N, Gedil M (2017) Genetic gains in yield and yield related traits under drought stress and favorable environments in a maize population improved using marker assisted recurrent selection. Front Plant Sci 8:808

    Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross’ Arta’× H. spontaneum 41-1. Theor App Gen 107(7):1215–1225

    Google Scholar 

  • Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds MP, Schnurbusch T, Langridge P (2011) Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor Appl Genet 124:1–15

    Google Scholar 

  • Bidinger FR, Serraj R, Rizvi SMH, Howarth C, Yadav RS, Hash CT (2005) Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet [Pennisetum glaucum (L.) R. Br.] topcross hybrids. Field Crops Res 94(1):14–32

    Google Scholar 

  • Budak H, Hussain B, Khan Z, Ozturk N-Z, Ullah N (2015) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1012

    Google Scholar 

  • Calderini D, Savin R, Abeledo L, Reynolds M, Slafer G (2001a) The importance of the period immediately preceding anthesis for grain weight determination in wheat. Euphytica 119:199–204

    Article  Google Scholar 

  • Calderini D, Savin R, Abeledo L, Reynolds M, Slafer G (2001b) The importance of the period immediately preceding anthesis for grain weight determination in wheat. In: Bedö Z, Láng L (eds) Wheat in a global environment. Springer, Dordrecht, The Netherlands, pp 503–509

    Chapter  Google Scholar 

  • Chourasia KN (2017) Resistance/Tolerance mechanism under water deficit (Drought) condition in plants. Int J Curr Microbiol App Sci 6:66–78

    Google Scholar 

  • Christopher J, Christopher M, Jennings R, Jones S, Fletcher S, Borrell A, Hammer G (2013) QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor App Gen 126(6):1563–1574

    Google Scholar 

  • Ciuca M, Petcu E (2009) SSR markers associated with membrane stability in wheat (Triticum aestivum L.). Rom Agric Res 26:21–24

    Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuesta-Marcos A, Casas AM, Hayes PM, Gracia MP, Lasa JM, Ciudad F. Igartua E (2009). Yield QTL affected by heading date in Mediterranean grown barley. Plant Breed 128(1):46–53

    Google Scholar 

  • de Miguel M, Cabezas J-A, de María N, Sánchez-Gómez D, Guevara M-Á, Vélez M-D, Sáez-Laguna E, Díaz LM, Mancha JA, Barbero MC (2014) Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification. BMC Genomics 15:464

    Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor App Gen 109(7):1417–1425

    Google Scholar 

  • El-Hafid R, Smith D-H, Karrou M, Sami K (1998) Morphological attributes associated with early-season drought tolerance in spring durum wheat in Mediterranean environment. Euphytica 101:273–282

    Article  Google Scholar 

  • Fahad S, Bajwa A-A, Nazir U, Anjum S-A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Shabala S, Ma Y, Xu R, Zhou M (2015) Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16(1):43

    Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103(6):1988–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahlaut V, Jaiswal V, Kumar A, Gupta PK (2016) Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theor App Genetics 129:2019–2042

    Article  CAS  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink G-R (2001) Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natil Acad Sci USA 98(20):11444–11449

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Balyan H, Gahlaut V, Kulwal P (2012) Phenotyping, genetic dissection, and breeding for drought and heat tolerance in common wheat: status and prospects. Plant Breed Rev 36:85–168

    Google Scholar 

  • Gupta P, Balyan H, Gahlaut V (2017) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7:5

    Article  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann J, Pineda O, Thomashow M-F, Zhang J-Z (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130(2):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M, Höhener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21(12):3029–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9(5)

    Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Porée F, Boucherez J, Lebaudy A, Bouchez D, Véry A-A, Simonneau T (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100(9): 5549-5554

    Google Scholar 

  • Hurd EA (1974) Phenotype and drought tolerance in wheat. Agric Meteorol 14:39–55

    Article  Google Scholar 

  • Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A (2018) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agr Water Manag 201:152–166

    Article  Google Scholar 

  • Iglesias-García R, Prats E, Fondevilla S, Satovic Z, Rubiales D (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Rep 33:1768–1778

    Article  CAS  Google Scholar 

  • Innes P, Blackwell RD, Quarrie S-A (1984) Some effects of genetic variation in drought-induced abscisic acid accumulation on the yield and water use of spring wheat. J Agric Sci 102:341–351

    Article  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27(4):325–333

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Mishra B, Chatrath R, Ferrara G-O, Singh R-P (2007) Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica 157:431–446

    Article  Google Scholar 

  • Jossier M, Kroniewicz L, Dalmas F, Le Thiec D, Ephritikhine G, Thomine S, Barbier-Brygoo H, Vavasseur A, Filleur S, Leonhardt N (2010) The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J 64(4):563–576

    Article  CAS  PubMed  Google Scholar 

  • Kahriman A, Temel HY, Aydoğan A, Tanyolac MB (2015) Major quantitative trait loci for flowering time in lentil. Turk J of Agric For 39:588–595

    Article  Google Scholar 

  • Kalladan R, Worch S, Rolletschek H, Harshavardhan VT, Kuntze L, Seiler C, Röder MS (2013) Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breed 32(1):71–90.

    Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security—a review. Proc Natl Acad Sci USA 19:1665–1674

    Article  Google Scholar 

  • Kapanigowda M-H, Payne W-A, Rooney W-L, Mullet J-E, Balota M (2014) Quantitative trait locus mapping of the transpiration ratio related to preflowering drought tolerance in sorghum (Sorghum bicolor). Funct Plant Biol 41:1049–1065

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350

    Article  CAS  PubMed  Google Scholar 

  • Kholová J, Nepolean T, Hash C-T, Supriya A, Rajaram V, Senthilvel S, Kakkera A, Yadav R, Vadez V (2012) Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet [Pennisetum glaucum (L.) R. Br.]. Mol Breed 30(3): 1337–1353

    Google Scholar 

  • Kim SJ, Kim WT (2013) Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress. FEBS Lett 587(16):2584–2590

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yang J-Y, Xu J, Jang I-C, Prigge M-J, Chua N-H (2008) Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiol 49(11):1634–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli MM, Mann CE, Rajaram S (1991) Global status and recent progress in breeding wheat for the warmer areas. In: Saunders DA (ed) Wheat for non-traditional, warm areas. CIMMYT, El Batan, Mexico, pp 96–112

    Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150(3):1394–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126(6):1109–1120

    Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively. Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12(12):2351–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor App Gen 124(1):97–109

    Google Scholar 

  • Mano Y, Omori F, Muraki M, Takamizo T (2005) QTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays L.) seedlings. Breed Sci 55(3):343–347

    Google Scholar 

  • Mansour E, Casas AM, Gracia MP, Molina-Cano JL, Moralejo M, Cattivelli L, Igartua E (2014) Quantitative trait loci for agronomic traits in an elite barley population for Mediterranean conditions. Mol Breed 33(2):249–265

    Google Scholar 

  • Mora F, Quitral YA, Matus I, Russell J, Waugh R, Del Pozo A (2016) SNP-based QTL mapping of 15 complex traits in barley under rain-fed and well-watered conditions by a mixed modeling approach. Front Plant Sci 7:909

    Google Scholar 

  • Muehlbauer FJ, Cho S, Sarker A, McPhee K-E, Coyne CJ, Rajesh P, Ford R (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149–165

    Article  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14(12):3089–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obidiegwu JE, Bryan GJ, Jones HG, Prashar A (2015) Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci 6:542

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Assmann S-M (2004) The Arabidopsis putative G protein–coupled receptor GCR1 interacts with the G protein α subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16(6):1616–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passioura JB (1977) Grain yield, harvest index, and water use of wheat

    Google Scholar 

  • Peighambari SA, Samadi BY, Nabipour AWCIT, Charmet G, Sarrafi A (2005) QTL analysis for agronomic traits in a barley doubled haploids population grown in Iran. Plant Sci 169(6):1008–1013

    Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53:989–1004

    Article  CAS  PubMed  Google Scholar 

  • Rana M, Verma P, Hussain W, Kaldate R, Shikha D, Kaachra A, Chahota R, Bhatia S, Sharma T (2017) Molecular mapping of QTLs for drought tolerance and yield traits in lentil

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  CAS  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades G, Hoisington D (1997) Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Reg 20:157–166

    Article  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150:1530–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars. Plant Signal Behav 4:388–393

    Article  CAS  PubMed  Google Scholar 

  • Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29(2):269–281

    Article  CAS  PubMed  Google Scholar 

  • Ryu MY, Cho SK, Kim WT (2010) The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol 154:1983–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayed MA, Schumann H, Pillen K, Naz AA, Léon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet 13(1):61

    Google Scholar 

  • Sellammal R, Robin S, Raveendran M (2014) Association and heritability studies for drought resistance under varied moisture stress regimes in backcross inbred population of rice. Rice Sci 21:150–161

    Article  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  PubMed  Google Scholar 

  • Sharma PC, Singh D, Sehgal D, Singh G, Hash CT, Yadav RS (2014) Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake. Environ Exp Bot 102:48–57

    Google Scholar 

  • Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Graner A (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physio 146(4):1738–1758

    Google Scholar 

  • Szira F, Börner A, Neumann K, Nezhad KZ, Galiba G, Bálint AF (2011) Could EST-based markers be used for the marker-assisted selection of drought tolerant barley (Hordeum vulgare) lines? Euph 178(3):373–391

    Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29(4):417–426

    Article  CAS  PubMed  Google Scholar 

  • Talamé V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R, Tuberosa R (2004) Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol 144(3):309–319

    Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Khan E-A (2018) 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiol Biochem

    Google Scholar 

  • Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier A (1998) Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L.). Theor Appl Genet 96:688–698

    Google Scholar 

  • Teulat B, Borries C, This D (2001a) New QTLs identified for plant water status, water-soluble carbohydrates, osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet 103:161–170

    Google Scholar 

  • Teulat B, Merah O, Souyris I, This D (2001b) QTLs for agronomic traits from Mediterranean barley progeny grown in several environments. Theor Appl Genet 103:774–787

    Google Scholar 

  • Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D (2002) QTL for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    Google Scholar 

  • Tondelli A, Francia E, Visioni A, Comadran J, Mastrangelo AM, Akar T, van Eeuwijk FA (2014) QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’בTremois’ biparental population. Euph 197(1):73–86

    Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson S-D, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49(1):46–63

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen H-T (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Vikram P, Swamy BM, Dixi S, Ahmed HU, Cruz MTS, Singh AK, Kumar A (2011) qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12(1):89

    Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21(1):81–93

    Google Scholar 

  • Wójcik-Jagła M, Rapacz M, Tyrka M, Kościelniak J, Crissy K, Żmuda K (2013) Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theor App Gen 126(12):3021–3034

    Google Scholar 

  • Wu S, Ning F, Zhang Q, Wu X, Wang W (2017) Enhancing omics research of crop responses to drought under field conditions. Front Plant Sci 8:174

    PubMed  PubMed Central  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress–and osmotic stress–responsive gene expression. Plant Cell 13(9):2063–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y (2002) Global view of QTL: rice as a model. Quantitative genetics, genomics and plant breeding. CABI Publishing, Wallingford, pp 109–134

    Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euph 136(3):265–277

    Google Scholar 

  • Yadav RS, Sehgal D, Vadez V (2011) Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot 62(2):397–408

    Google Scholar 

  • Zhu J, Gong Z, Zhang C, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa P-M Bressan R-A (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid–mediated and non-abscisic acid–mediated responses to abiotic stress. Plant Cell 14(12):3009–3028

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andleeb, T., Shah, T., Nawaz, R., Munir, I., Munsif, F., Jalal, A. (2020). QTL Mapping for Drought Stress Tolerance in Plants. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_16

Download citation

Publish with us

Policies and ethics