Advertisement

Education of IoT-Engineering in Austrian Vocational Secondary Schools

  • Andreas ProbstEmail author
  • Manfred Grafinger
  • Gabriele Schachinger
  • Reinhard Bernsteiner
Conference paper
  • 24 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1134)

Abstract

The Internet of Things (IoT), as an upcoming technology, has the potential to change the way engineers work and communicate among each other. The same is true for the companies’ workforce, which is spread all over the world, is of different origin and has different technical backgrounds.

The constantly changing situation in industry always has and will continue to impact engineering education. Therefore, the implementation of IoT possibilities and technologies seems to be an appropriate advancement to develop the engineering education curriculum for today’s needs. IoT platforms are an emerging set of tools that provide technical support for the design and implementation of IoT-base systems and services.

The aim and purpose of this research work is the starting point of the implementation of IoT technologies into daily engineering education.

This research study lays the foundation for the introduction and development of a best practice approach in the field of IoT at Austrian vocational secondary education colleges of engineering so-called HTL. Mechanical and Industrial Engineering HTL-departments are the selected streams for this research work.

Keywords

Internet of Things Engineering education Higher vocational education Case based teaching and learning Industry 4.0 

References

  1. 1.
    Reis, J., Amorim, M., Melão, N., Matos, P.: Digital transformation: a literature review and guidelines for future research. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) Trends and Advances in Information Systems and Technologies, Volume 1. Advances in Intelligent Systems and Computing, vol. 745, pp. 411–421. Springer, Cham (2018)Google Scholar
  2. 2.
    Henriette, E., Feki, M., Boughzala, I.: The shape of digital transformation: a systematic literature review. In: AIS (ed.) Mediterranean Conference on Information Systems (2015)Google Scholar
  3. 3.
  4. 4.
    Hess, T., Matt, C., Benlian, A., Wiesböck, F.: Options for formulating a digital transformation strategy. MIS Q. Execu. 15, 103–119 (2016)Google Scholar
  5. 5.
    Parviainen, P., Tihinen, M., Kääriäinen, J., Teppola, S.: Tackling the digitalization challenge: how to benefit from digitalization in practice. Int. J. Inf. Syst. Proj. Manage. (2017).  https://doi.org/10.12821/ijispm050104
  6. 6.
    Weiser, M., Gold, R., Brown, J.S.: The origins of ubiquitous computing research at PARC in the late 1980s. IBM Syst. J. (1999).  https://doi.org/10.1147/sj.384.0693CrossRefGoogle Scholar
  7. 7.
    Ashton, K.: That “Internet of Things” Thing: In the Real World Things Matter More than Ideas (2009). http://www.rfidjournal.com/articles/view?4986. Accessed 14 May 2019
  8. 8.
    Dorsemaine, B., Gaulier, J.-P., Wary, J.-P., Kheir, N., Urien, P.: Internet of things: a definition & taxonomy. In: IEEE 9th International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST), Cambridge, UK, pp. 72–77. IEEE (2015).  https://doi.org/10.1109/NGMAST.2015.71
  9. 9.
    Lee, I., Lee, K.: The Internet of Things (IoT). Applications, investments, and challenges for enterprises. Business Horizons (2015).  https://doi.org/10.1016/j.bushor.2015.03.008CrossRefGoogle Scholar
  10. 10.
    Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming companies. Harv. Bus. Rev. 93, 53–71 (2015)Google Scholar
  11. 11.
    Fleisch, E., Weinberger, M., Wortmann, F.: Geschäftsmodelle im Internet der Dinge. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung (2015).  https://doi.org/10.1007/BF03373027CrossRefGoogle Scholar
  12. 12.
    Rudtsch, V., Gausemeier, J., Gesing, J., Mittag, T., Peter, S.: Pattern-based business model development for cyber-physical production systems. Procedia CIRP (2014).  https://doi.org/10.1016/j.procir.2014.10.044CrossRefGoogle Scholar
  13. 13.
  14. 14.
    IDC: IDC Forecasts Worldwide Technology Spending on the Internet of Things (2019). https://www.idc.com/getdoc.jsp?containerId=prUS44596319. Accessed 18 Apr 2019
  15. 15.
    Sadeghi, A.-R., Wachsmann, C., Waidner, M.: Security and privacy challenges in industrial internet of things. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 8–12 [i.e. 7–11] June 2015, San Francisco, CA. The 52nd Annual Design Automation Conference, San Francisco, California, 7–11 June 2015, pp. 1–6. IEEE, Piscataway, NJ (2015).  https://doi.org/10.1145/2744769.2747942
  16. 16.
    Chen, Y.: Integrated and intelligent manufacturing: perspectives and enablers. Engineering 3, 588–595 (2017)CrossRefGoogle Scholar
  17. 17.
    Hernandez, P.M.E., Reiff-Marganiec, S.: Classifying smart objects using capabilities. In: 2014 International Conference on Smart Computing (SMARTCOMP), Hong Kong, Hong Kong, 3–5 November 2014, pp. 309–316. IEEE (2014).  https://doi.org/10.1109/SMARTCOMP.2014.7043873
  18. 18.
    Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things (IIoT): an analysis framework. Comput. Ind. (2018).  https://doi.org/10.1016/j.compind.2018.04.015CrossRefGoogle Scholar
  19. 19.
    Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems. In: Sapatnekar, S. (ed.) Proceedings of the 47th Design Automation Conference, Anaheim, California, 13 June 2010. ACM, New York, NY (2010).  https://doi.org/10.1145/1837274.1837461
  20. 20.
    Schuh, G., Rudolf, S., Riesener, M.: Design for Industrie 4.0 – product development in the context of Industrie 4.0. In: Proceedings of the 14th International Design Conference – DESIGN 2016, pp. 1387–1396 (2016)Google Scholar
  21. 21.
    Abramovici, M., Herzog, O. (eds.): Engineering im Umfeld von Industrie 4.0. Einschätzungen und Handlungsbedarf. Acatech Studie. Acatech, Herbert Utz Verlag GmbH, München (2016)Google Scholar
  22. 22.
    Albers, A., Denkena, B., Matthiesen, S.: Faszination Konstruktion. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Becker, F.S.: Why don’t young people want to become engineers? Rational reasons for disappointing decisions. Eur. J. Eng. Educ. (2010).  https://doi.org/10.1080/03043797.2010.489941CrossRefGoogle Scholar
  24. 24.
    Mills, J.E., Treagust, D.: Engineering education – is problem based or project-based learning the answer? Australas. J. Eng. Educ. 3, 2–16 (2003). ISSN 1324-5821, online publicationGoogle Scholar
  25. 25.
    Kolomos, A.: Reflections on project work and problem-based learning. Eur. J. Eng. Educ. 21, 141–148 (2010)CrossRefGoogle Scholar
  26. 26.
    Ammar, M., Russello, G., Crispo, B.: Internet of things: a survey on the security of IoT frameworks. J. Inf. Secur. Appl. (2018).  https://doi.org/10.1016/j.jisa.2017.11.002CrossRefGoogle Scholar
  27. 27.
    Salami, A., Yari, A.: A framework for comparing quantitative and qualitative criteria of IoT platforms. In: 2018 4th International Conference on Web Research (ICWR), Tehran, Iran, 25–26 April 2018, pp. 34–39. IEEE, Piscataway, NJ (2018).  https://doi.org/10.1109/ICWR.2018.8387234
  28. 28.
    Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of Internet-of-Things platforms. Comput. Commun. (2016).  https://doi.org/10.1016/j.comcom.2016.03.015CrossRefGoogle Scholar
  29. 29.
    Krause, T., Strauß, O., Scheffler, G., Kett, H., Lehmann, K., Renner, T.: IT-Plattformen für das Internet der Dinge (IoT). Basis intelligenter Produkte und Services. Fraunhofer Verlag, Stuttgart (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Probst
    • 1
    Email author
  • Manfred Grafinger
    • 2
  • Gabriele Schachinger
    • 3
  • Reinhard Bernsteiner
    • 4
  1. 1.HTL WelsWelsAustria
  2. 2.TU WienViennaAustria
  3. 3.TGM WienViennaAustria
  4. 4.HTL JenbachJenbachAustria

Personalised recommendations