Advertisement

Improved Secure Integer Comparison via Homomorphic Encryption

  • Florian Bourse
  • Olivier SandersEmail author
  • Jacques Traoré
Conference paper
  • 37 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12006)

Abstract

Secure integer comparison has been one of the first problems introduced in cryptography, both for its simplicity to describe and for its applications. The first formulation of the problem was to enable two parties to compare their inputs without revealing the exact value of those inputs, also called the Millionaires’ problem [45]. The recent rise of fully homomorphic encryption has given a new formulation to this problem. In this new setting, one party blindly computes an encryption of the boolean \((a<b)\) given only ciphertexts encrypting a and b.

In this paper, we present new solutions for the problem of secure integer comparison in both of these settings. The underlying idea for both schemes is to avoid decomposing the integers in binary in order to improve the performances. On the one hand, our fully homomorphic based solution is inspired by [9], and makes use of the fast bootstrapping techniques developed by [12, 14, 23] to obtain scalability for large integers while preserving high efficiency. On the other hand, our solution to the original Millionaires’ problem is inspired by the protocol of [10], based on partially homomorphic encryption. We tweak their protocol in order to minimize the number of interactions required, while preserving the advantage of comparing non-binary integers.

Both our techniques provide efficient solutions to the problem of secure integer comparison for large (even a-priori unbounded in our first scenario) integers with minimum interactions.

Notes

Acknowledgements

This work is supported by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701) and PAPAYA project (Horizon 2020 Innovation Program, grant 786767). The authors are also grateful for the support of the ANR through project ANR-16-CE39-0014 PERSOCLOUD.

References

  1. 1.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_33CrossRefGoogle Scholar
  2. 2.
    Abspoel, M., Bouman, N.J., Schoenmakers, B., de Vreede, N.: Fast secure comparison for medium-sized integers and its application in binarized neural networks. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 453–472. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-12612-4_23CrossRefzbMATHGoogle Scholar
  3. 3.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_12CrossRefGoogle Scholar
  4. 4.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher. In: 2013 IEEE SSP, pp. 478–492 (2013)Google Scholar
  6. 6.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM CCS 2012, pp. 784–796 (2012)Google Scholar
  7. 7.
    Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing encrypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 206–220. Springer, Heidelberg (2006).  https://doi.org/10.1007/11889663_18CrossRefzbMATHGoogle Scholar
  8. 8.
    Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: NDSS (2015)Google Scholar
  9. 9.
    Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96878-0_17CrossRefGoogle Scholar
  10. 10.
    Carlton, R., Essex, A., Kapulkin, K.: Threshold properties of prime power subgroups with application to secure integer comparisons. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 137–156. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76953-0_8CrossRefGoogle Scholar
  11. 11.
    Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 142–159. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48051-9_11CrossRefGoogle Scholar
  12. 12.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 s. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_1CrossRefzbMATHGoogle Scholar
  13. 13.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based E-voting scheme. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 245–265. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29360-8_16CrossRefGoogle Scholar
  14. 14.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_14CrossRefGoogle Scholar
  15. 15.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. Cryptology ePrint Archive, Report 2018/421 (2018). https://eprint.iacr.org/2018/421
  16. 16.
    Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22174-8_3CrossRefGoogle Scholar
  17. 17.
    Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis of the RSA subgroup assumption from TCC 2005. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 147–155. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_9CrossRefGoogle Scholar
  19. 19.
    Crawford, J.L.H., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work with FHE: the case of logistic regression. In: WAHC@CCS 2018, pp. 1–12 (2018)Google Scholar
  20. 20.
    Damgård, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 416–430. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73458-1_30CrossRefzbMATHGoogle Scholar
  21. 21.
    Damgård, I., Geisler, M., Krøigaard, M.: A correction to ‘efficient and secure comparison for on-line auctions’. IJACT 1(4), 323–324 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Desmoulins, N., Lescuyer, R., Sanders, O., Traoré, J.: Direct anonymous attestations with dependent basename opening. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 206–221. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12280-9_14CrossRefGoogle Scholar
  23. 23.
    Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_24CrossRefzbMATHGoogle Scholar
  24. 24.
    Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: 26th ACM STOC, pp. 554–563 (1994)Google Scholar
  25. 25.
    Fischlin, M.: A cost-effective pay-per-multiplication comparison method for millionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45353-9_33CrossRefGoogle Scholar
  26. 26.
    Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71677-8_22CrossRefGoogle Scholar
  27. 27.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM STOC, pp. 169–178 (2009)Google Scholar
  28. 28.
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_5CrossRefGoogle Scholar
  29. 29.
    Groth, J.: Cryptography in subgroups of \(\mathbb{Z}_{n}^{*}\). In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 50–65. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_4CrossRefzbMATHGoogle Scholar
  30. 30.
    Joye, M., Salehi, F.: Private yet efficient decision tree evaluation. In: Kerschbaum, F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol. 10980, pp. 243–259. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-95729-6_16CrossRefGoogle Scholar
  31. 31.
    Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89255-7_23CrossRefGoogle Scholar
  32. 32.
    Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10433-6_1CrossRefzbMATHGoogle Scholar
  33. 33.
    Lenstra, A.K.: Key lengths. In: The Handbook of Information Security (2004)Google Scholar
  34. 34.
    Lin, H.-Y., Tzeng, W.-G.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 456–466. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496137_31CrossRefGoogle Scholar
  35. 35.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_1CrossRefGoogle Scholar
  36. 36.
    McKee, J., Pinch, R.: Further attacks on server-aided RSA cryptosystems (1998)Google Scholar
  37. 37.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th ACM STOC, pp. 187–196 (2008)Google Scholar
  38. 38.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 37th ACM STOC, pp. 84–93Google Scholar
  39. 39.
    Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg (1986).  https://doi.org/10.1007/3-540-39805-8_3CrossRefGoogle Scholar
  40. 40.
    Smart, N.P.: Algorithms, key size and protocols report, ECRYPT - CSA (2018). http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
  41. 41.
    Veugen, T.: Encrypted integer division. In: 2010 IEEE International Workshop on Information Forensics and Security, pp. 1–6 (2010)Google Scholar
  42. 42.
    Veugen, T.: Improving the DGK comparison protocol. In: WIFS 2012, pp. 49–54 (2012)Google Scholar
  43. 43.
    Veugen, T.: Encrypted integer division and secure comparison. IJACT 3(2), 166–180 (2014)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wang, S., et al.: HEALER: homomorphic computation of exact logistic regression for secure rare disease variants analysis in GWAS. Bioinformatics 32(2), 211–218 (2016)Google Scholar
  45. 45.
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982Google Scholar
  46. 46.
    Zhou, T., Yang, X., Liu, L., Zhang, W., Ding, Y.: Faster bootstrapping with multiple addends. Cryptology ePrint Archive, report 2017/735 (2017). http://eprint.iacr.org/2017/735

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Florian Bourse
    • 1
  • Olivier Sanders
    • 1
    Email author
  • Jacques Traoré
    • 2
  1. 1.Orange Labs, Applied Crypto GroupCesson-SévignéFrance
  2. 2.Orange Labs, Applied Crypto GroupCaenFrance

Personalised recommendations