Advertisement

Faster Homomorphic Encryption is not Enough: Improved Heuristic for Multiplicative Depth Minimization of Boolean Circuits

  • Pascal AubryEmail author
  • Sergiu Carpov
  • Renaud Sirdey
Conference paper
  • 8 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12006)

Abstract

In somewhat homomorphic encryption schemes (e.g. B/FV, BGV) the size of ciphertexts and the execution performance of homomorphic operations depends heavily on the multiplicative depth. The multiplicative depth is the maximal number of consecutive multiplications for which the homomorphic encryption scheme was parameterized.

In this work we improve a heuristic for multiplicative depth minimization of Boolean circuits found in the literature. In particular, a new circuit rewriting operator is introduced, the so called cone rewrite operator. The results we obtain using the new method are relevant in terms of accuracy and performance. The multiplicative depths for a benchmark of Boolean circuits is highly improved and the execution time of the new heuristic is significantly lower. The proposed rewrite operator and heuristic are not limited to Boolean circuits, but can also be used for arithmetic circuits.

Keywords

Somewhat homomorphic encryption Multiplicative depth Boolean functions Heuristic 

References

  1. 1.
    Amarú, L., Gaillardon, P.E., De Micheli, G.: The EPFL combinational benchmark suite. In: Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS) (2015)Google Scholar
  2. 2.
    Benhamouda, F., Lepoint, T., Mathieu, C., Zhou, H.: Optimization of bootstrapping in circuits. In: SODA, pp. 2423–2433. SIAM (2017)Google Scholar
  3. 3.
    Berkeley Logic Synthesis and Verification Group: ABC: A System for Sequential Synthesis and Verification. Release 30308. http://www.eecs.berkeley.edu/~alanmi/abc/, http://www.eecs.berkeley.edu
  4. 4.
    Boyar, J., Peralta, R.: Concrete multiplicative complexity of symmetric functions. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 179–189. Springer, Heidelberg (2006).  https://doi.org/10.1007/11821069_16CrossRefzbMATHGoogle Scholar
  5. 5.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_50CrossRefGoogle Scholar
  6. 6.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS 2012, pp. 309–325 (2012)Google Scholar
  7. 7.
    Buescher, N., Holzer, A., Weber, A., Katzenbeisser, S.: Compiling low depth circuits for practical secure computation. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 80–98. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45741-3_5CrossRefGoogle Scholar
  8. 8.
    Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Carpov, S., Aubry, P., Sirdey, R.: A multi-start heuristic for multiplicative depth minimization of boolean circuits. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 275–286. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78825-8_23CrossRefGoogle Scholar
  10. 10.
    Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: A compilation chain for privacy preserving applications. In: Proceedings of the 3rd International Workshop on Security in Cloud Computing, SCC 2015, pp. 13–19 (2015)Google Scholar
  11. 11.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_1CrossRefzbMATHGoogle Scholar
  12. 12.
    Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_19CrossRefGoogle Scholar
  13. 13.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_38CrossRefGoogle Scholar
  14. 14.
    Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_24CrossRefzbMATHGoogle Scholar
  15. 15.
    Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch. 2012, 144 (2012)Google Scholar
  16. 16.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing STOC 2009, pp. 169–178 (2009)Google Scholar
  17. 17.
    Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_1CrossRefGoogle Scholar
  18. 18.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)Google Scholar
  19. 19.
    Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10433-6_1CrossRefzbMATHGoogle Scholar
  20. 20.
    Lepoint, T., Paillier, P.: On the minimal number of bootstrappings in homomorphic circuits. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 189–200. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41320-9_13CrossRefGoogle Scholar
  21. 21.
    Paik, D., Reddy, S., Sahni, S.: Deleting vertices to bound path length. IEEE Trans. Comput. 9, 1091–1096 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Paindavoine, M., Vialla, B.: Minimizing the number of bootstrappings in fully homomorphic encryption. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 25–43. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31301-6_2CrossRefzbMATHGoogle Scholar
  23. 23.
    Schneider, T., Zohner, M.: GMW vs. Yao? efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_23CrossRefGoogle Scholar
  24. 24.
    Svensson, O.: Hardness of vertex deletion and project scheduling. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM -2012. LNCS, vol. 7408, pp. 301–312. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32512-0_26CrossRefGoogle Scholar
  25. 25.
    Wernick, W.: Complete sets of logical functions. Trans. Am. Math. Soc. 51(1), 117–132 (1942)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.CEA, LISTGif-sur-Yvette CedexFrance
  2. 2.CEA, LISTGrenoble CedexFrance

Personalised recommendations