Gears pp 131-236 | Cite as

The Second Scientific Age: From Galileo to Today

  • Vincenzo VulloEmail author
Part of the Springer Series in Solid and Structural Mechanics book series (SSSSM, volume 12)


In this chapter, the initially slow and then increasingly rapid awakening of the second scientific age, which goes from Galileo to the present day, is described. Attention is first focused on the first two centuries of scientific activity, from Galileo to Lagrange, because in this time the mechanics establishes itself as queen of the sciences. However, it is emphasized that, in these two centuries, stagnation continues to prevail in the field of gears, which continue to look to the past again and do not immediately benefit from new scientific achievements. Subsequently, attention is focused on the slow detachment from pure empiricism and the equally slow penetration of science into the field of gears. The main scientific contributions are described, which initially concern only the geometric–kinematic aspects. It is also highlighted that, gradually, these aspects begin to be seen from the perspective of the new cutting processes that are gradually conceived and developed. Still later, the attention is focused on the mechanics of solids and on material strength theories that, even in this case, first gradually and then with forced charge, enter the field of gears. In this regard, this brief history only describes the contributions of the pioneers, who have begun new lines of research on gears, starting from Lewis to the present day. Therefore, only the milestones on the state of knowledge concerning the load carrying capacity of the gears in its most diverse aspects are described. To give a concrete demonstration of the fact that gears are ancient science in continuous updating, in the final part of this chapter, brief considerations are presented on the historical aspects of three particular types of damage, which are related to the load carrying capacity of the gears in terms of abrasive wear, micropitting and tooth flank breakage. The chapter closes with epigraphic news on the main monographs and textbooks on gears from 1900 to the present, with a due exception to Olivier’s 1842 treatise, which is probably the first monograph that was written and published on the gears.


  1. 1.
    Addomine M, Figliolini G, Pennestrì E (2018) A landmark in the history of non-circular gear design: the mechanical masterpise of Dondi’s astrarium. Mech Mach Theory 122:219–232CrossRefGoogle Scholar
  2. 2.
    Airy GB (1827) On the forms of the teeth of wheels. Trans Camb Philos Soc II:279Google Scholar
  3. 3.
    Akahori H, Sato Y, Nishida Y, Kubo A (2001) Test of the durability of face gears. The JSME international conference, MTP 2001, Fukuoka, JapanGoogle Scholar
  4. 4.
    Al-Tubi IS, Long H, Zhang J, Shaw B (2015) Experimental and analytical study of gear micropitting initiation and propagation under varying load conditions. Wear 328–329:8–16CrossRefGoogle Scholar
  5. 5.
    Al BC, Langlois P (2015) Analysis of tooth interior fatigue fracture using boundary conditions from an efficient and accurate loaded tooth contact analysis. In: British Gears Association (BGA) Gears 2015 Technical Awareness Seminar, 12th of November 2015, Nottingham, U.K. (also Gear Solutions, Feb. 2016)Google Scholar
  6. 6.
    Al BC, Patel R, Langlois P (2016) Finite element analysis of tooth flank fracture using boundary conditions from LTCA. In: CTI Symposium USA, Novi, MI, 11–12 May 2016Google Scholar
  7. 7.
    Al BC, Patel R, Langlois P (2017) Comparison of tooth interior fatigue fracture load capacity to standardized gear failure models. Gear Solutions, July, pp 47–57Google Scholar
  8. 8.
    Almen JO (1935) Factors influencing durability of spiral bevel gears for automobiles. Automot Ind 73:662–668, 696–701Google Scholar
  9. 9.
    Almen JO (1942) Dimensional value of lubricants in gear design. SAE J 50, and SAE Technical Paper 420113Google Scholar
  10. 10.
    Almen JO, Straub JC (1937) Factors influencing the durability of automotive transmission gears. Automot Ind 77:426–432, 488–493Google Scholar
  11. 11.
    Almen JO, Straub JC (1948) Aircraft gearing, analysis of test and service data. Research Laboratories Division General Motors Corporation, Detroit, Michigan; Source American Gear Manufacturers AssociationGoogle Scholar
  12. 12.
    Amontons G (1699) De la resistance causée dans les machines. Mémoires de Mathematique et de Physique de l’Academie Royale des Sciences, pp 257–282Google Scholar
  13. 13.
    Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988CrossRefGoogle Scholar
  14. 14.
    Argyris JH (1954) Energy theorems and structural analysis. Aircr Eng 26:347–356, 383–387, 394CrossRefGoogle Scholar
  15. 15.
    Argyris JH (1955) Energy theorems and structural analysis. Aircr Eng 27:42–58, 80–94, 125–134, 145–158CrossRefGoogle Scholar
  16. 16.
    Argyris JH (1960) Energy theorems and structural analysis. Butterworth Scientific Publications, LondonCrossRefGoogle Scholar
  17. 17.
    Argyris JH, Kelsey S (1956) The matrix force method of structural analysis and some new applications. Aeron Res Council (London) R&M 3034Google Scholar
  18. 18.
    Argyris JH, Kelsey S (1956) Structural analysis by the matrix force method with applications to aircraft winds. Wiss Ges Luftfahrt Jahrb, pp 78–98Google Scholar
  19. 19.
    Aziz IAA, Idris DMN, Ghazali WM (2017) Investigation bending strength of spur gear: a review. In: MATEC web of conferences, 90, 01037, AiGEV 2016Google Scholar
  20. 20.
    Ball RS (1876) The theory of screws: a study in the dynamics of a rigid body. Hodges, Foster, and Co., Grafton-street, DublinGoogle Scholar
  21. 21.
    Ball RS (1900) A treatise on the theory of screws. Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Ballarini R (2006) The Da Vinci-Euler-Bernoulli Beam Theory. Mechanical Engineering Magazine Online, June 23Google Scholar
  23. 23.
    Banerjee PK, Butterfield R (1981) Boundary element methods in engineering science. McGraw-Hill, New YorkGoogle Scholar
  24. 24.
    Basstein G, Sijtstra A (1993) New developments concerning design and manufacturing of face gears. Antriebstechnik 32(11)Google Scholar
  25. 25.
    Bauschinger J (1897) Mitt Mech Tech Lab. Technischen Hochschule, Munich, nr.25Google Scholar
  26. 26.
    Beale OJ (1901) A handbook for apprenticed mechanists, 3rd edn. Brown & Sharpe MGF Co., ProvidenceGoogle Scholar
  27. 27.
    Becker AA (1992) The boundary element method in engineering: a complete course. McGraw-Hill Book Company, New YorkGoogle Scholar
  28. 28.
    Beermann S, Kissling U (2015) Tooth Flank Fracture—a critical failure mode. Influence of Macro and Micro Geometry. KISSsoft User Conference IndiaGoogle Scholar
  29. 29.
    Belajev NM (1917) Bulletin of institution engineers of ways and communications, St. PetersburgGoogle Scholar
  30. 30.
    Belajev NM (1924) Local stresses in compression of elastic bodies. In: Memoirs on theory of structures, St. PetersburgGoogle Scholar
  31. 31.
    Bell ET (1937) Men of mathematics. Simon & Schuster, New YorkGoogle Scholar
  32. 32.
    Benford RL (1968) Customized motions. Mach Des 151–154Google Scholar
  33. 33.
    Bennet JA (1991) Geometry and Surveying in early-seventeenth-century England. J Ann Sci 48(4):345–354Google Scholar
  34. 34.
    Bernoulli J (1691) Specimen alterum Calculi differentialis in demitienda Spirali Logarithmica. Loxodromiis Nautarum & Areis Triangulorum Sphaericorum: una cum Additamento quodam ad Problema Funicularium, aliaque. Acta Eroditorum, June, pp 282–290Google Scholar
  35. 35.
    Bernoulli J (1692) Lineae Cycloides, Evolutae, Anti-Evolutae, Causticae, Anti-Causticae, Peri-Causticae. Earum usus & simplex relatio ad se invicem. Spira mirabilis. Aliaque. Acta Eroditorum, Maji, pp 207–213Google Scholar
  36. 36.
    Berthe D, Flamand L, Foucher D, Godet M (1980) Micro-pitting in Hertzian contacts. Trans ASME J Lubr Technol 102:478–489CrossRefGoogle Scholar
  37. 37.
    Bhandari VB (2010) Design of machine elements, 3rd edn. Tata McGraw-Hill Education Private Limited, New DelhiGoogle Scholar
  38. 38.
    Bidwell S (1883) On the electrical resistance of carbon contacts. Proc R Soc Lond 35:1–18Google Scholar
  39. 39.
    Birch TW (2012) Automatic transmissions and transaxles. Pearson Education, Upper Saddle RiverGoogle Scholar
  40. 40.
    Blateyron F (2013) The areal field parameters. In: Leach R (ed) Characterization of areal surface texture. Springer, BerlinCrossRefGoogle Scholar
  41. 41.
    Blok H (1937) Measurements of temperature flashes on gear teeth under extreme pressure conditions. Proc Gen Discuss Lubr Inst Mech Eng 2:18–22Google Scholar
  42. 42.
    Blok H (1937) Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. Gen Discuss Lubr Proc Inst Mech Eng 2:222–235Google Scholar
  43. 43.
    Blok H (1937) Les températures de surface dans des conditions de graissage sous pressions extrêmes. In: Proceedings of the 2nd world petroleum congress, Paris, Section IV, III, pp 151–182Google Scholar
  44. 44.
    Blok H (1937) Surface temperature measurements on gear teeth under extreme pressure lubricating conditions. Power Transm 653–656Google Scholar
  45. 45.
    Bloomfield B (1947) Designing face gears. Mach Des 19(4):129–134Google Scholar
  46. 46.
    Bloomfield B (1960) Non-circular gears. Prod Eng 59–66Google Scholar
  47. 47.
    Bodensieck EJ (1965) Specific film thickness—an index of gear tooth surface determination. Paper presented at 1965 Aerospace gear communications technical division meeting, AGMA (Denver, CO), SeptGoogle Scholar
  48. 48.
    Boiadjiev I, Witzig J, Tobie T, Stahl K (2014) Tooth flank fracture-basic principles and calculation model for a sub-surface-initiated fatigue mode of case-hardened gears. In: International gear conference, Lyon, France 26–28 Aug 2014. Also Gear TechnologyGoogle Scholar
  49. 49.
    Bordmer JG (1843) On the pitch of spur and bevel wheels and the shape of the teeth of worm wheels and worm working into each other. Minutes Proc Inst Civ Eng 2:32Google Scholar
  50. 50.
    Bottema O, Roth B (1979) Theoretical kinematics. North-Holland, AmsterdamGoogle Scholar
  51. 51.
    Boussinesq J (1885) Application des Potentiels à l’étude de l’équilibre et du mouvement des solides élastiques avec des notes étendues sur divers points de physique mathématique et d’analyse. Gauthier-Villars, ParisGoogle Scholar
  52. 52.
    Bowden FP, Tabor D (1939) The area of contact between stationary and between moving surfaces. Proc R Soc Lond A 169(938):391–413Google Scholar
  53. 53.
    Bradley RE, Sandifer CE (eds) (2007) Leonhard Euler: life, work and legacy. In: Studies in the history and philosophy of mathematics. Elsevier, AmsterdamGoogle Scholar
  54. 54.
    Brebbia CA (1978) The boundary element method for engineers. Pentech Press, LondonGoogle Scholar
  55. 55.
    Buchanan R (1808) An essays on the teeth of wheels: comprehending principles, and their application in practice, to, millwork and other machinery. With numerous figures, revised by Peter Nicholson. Printed by and for William Savage, LondonGoogle Scholar
  56. 56.
    Buchanan R (1814) Practical essays on millwork and other machinery, mechanical and descriptive, 3 vols. Printed by Gibson & Sanderson, for J. Taylor, EdinburghGoogle Scholar
  57. 57.
    Buchanan R (1823) Practical essays on mill work and other machinery, with notes and additional articles containing new researches on various mechanical subjects by Thomas Tredgold, vol I and vol II, 2nd edn. J. Taylor, LondonGoogle Scholar
  58. 58.
    Buckingham E (1928) Spur gears. McGraw-Hill, New YorkGoogle Scholar
  59. 59.
    Buckingham E (1949) Analytical mechanics of gears. McGraw-Hill, New YorkGoogle Scholar
  60. 60.
    Burn RP (2012) Another theorem of Cauchy which admits exceptions. Historia Mathematica 39(2):206–210MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Buyse F (2017) Galileo, Huygens and the pendulum clock: isochronism and synchronicity. Soc Polit 11(2):7–14Google Scholar
  62. 62.
    Camus CEL (1733) Sur la figure des dentes des rouës, et des ailes des pignons, pour rendre les horloges plus perfaites. Historie et Mémoires de l’Academie des Sciences, Paris, pp 117–140Google Scholar
  63. 63.
    Camus CEL, Hawkins JI (1837) A Treatise on the teeth of wheels, demonstrating the best forms which can be given to them for the purposes of machinery, such as mill-work and clock-work, and the art of finding their numbers, translated from the French of M. Camus, 2nd edn. carefully revised and enlarged with Details of the Present Practice of Mill-Wrights, Engine Makers, and other Mechanists. John Isaac Hawkins, James S. Hudson, LondonGoogle Scholar
  64. 64.
    Capechi D (2018) The path to post-galilean epistemology, reinterpreting the birth of modern science. Springer International Publishing AG, BerlinGoogle Scholar
  65. 65.
    Carbone GM (2017) Brown & Sharpe and the measure of American industry: making the precision machine tools that enabled manufacturing, 1833–2001. McFarland & Co., Inc., JeffersonGoogle Scholar
  66. 66.
    Cardano G (1870) Opus novum de proportionibus numerorum, motuum, ponderum, sonorum, aliarumque rerum mensurandarum. Item de aliza regula. Henricus Petri, BaselGoogle Scholar
  67. 67.
    Castigliano CA (1873) Intorno ai sistemi elastici, Dissertazione presentata da Castigliano Carlo Alberto alla Commissione Esaminatrice della R. Scuola d’Applicazione degli Ingegneri in Torino. Bona, TorinoGoogle Scholar
  68. 68.
    Cauchy A-L (1821) Cours d’Analyse de l’École Royale Politechnique: Analyse Algébrique. Debure Frères, ParisGoogle Scholar
  69. 69.
    Cauchy A-L (1823) Recherches sur l’equilibre et le mouvement intérieur des corps solides ou fluides élastiques ou non élastiques. Bulletin de la Societé Plilomathique 9–13Google Scholar
  70. 70.
    Cauchy A-L (1828) Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide élastique ou non élastique. Exercises de Mathématiques 3:160–187Google Scholar
  71. 71.
    Cauchy A-L (1853) Note sur les series dont les divers termes sont des functions continues d’une variable réelle ou imaginaire, entre les limites données. Comptes Rendus de l’Académie des Sciences, Paris 36:454–459Google Scholar
  72. 72.
    Cayley A (1858) A memoir on the theory of matrices. Philos Trans R Soc Lond 148:17–37Google Scholar
  73. 73.
    Cerruti V (1881–82) Ricerche intorno all’equilibrio dei corpi elastici isotropi, Atti della Reale Accademia dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, Serie 3, Annata 279, vol 13, pp 81–122; reprint with the same title, Roma, Salviucci, 1882Google Scholar
  74. 74.
    Chakraborty J, Bhadoria BS (1971) Design of face gears. Mechanisms 6:435–445Google Scholar
  75. 75.
    Chakraborty J, Bhadoria BS (1973) Some studies on hypoid face gears. Mech Mach Theory 8:339–349CrossRefGoogle Scholar
  76. 76.
    Chauhan V (2016) A review on effect of some important parameters on the bending strength and surface durability of gears. Int J Sci Res Publ 6(3):289–298Google Scholar
  77. 77.
    Clapeyron BPE (1833) Mémoire sur l’équilibre intérieur des corps solides homogènes. Mémoires présentés par divers savants à l’Académie Royale des Sciences de l’Institut de France, Sciences Mathématiques et Physiques 4:463–562Google Scholar
  78. 78.
    Clough RW (1960) The finite element method in plane stress analysis. In: Proceedings of the second conference on electronic computation. American Society of Civil Engineers, New York, pp 345–377Google Scholar
  79. 79.
    Colbourne JR (1987) The geometry of involute gears. Springer, BerlinzbMATHCrossRefGoogle Scholar
  80. 80.
    Colonnetti G (1918) Applicazione a problemi tecnici di un nuovo teorema sulle coazioni elastiche. Atti R Acc Torino 54:69–83Google Scholar
  81. 81.
    Colonnetti G (1940) Deformazioni plastiche e deformazioni viscose, Pontificia Academia Scientiarum, Città del Vaticano. Tip. Cuggiani, Roma, pp 155–161Google Scholar
  82. 82.
    Colonnetti G (1953) Scienza delle Costruzioni: 1. Teoria generale dell’equilibrio, 3rd edn. Edizioni Scientifiche Einaudi, TorinoGoogle Scholar
  83. 83.
    Colonnetti G (1955) Scienza delle Costruzioni: 2. La statica delle travi e degli archi, 3rd edn. Edizioni Scientifiche Einaudi, TorinoGoogle Scholar
  84. 84.
    Colonnetti G (1957) Scienza delle Costruzioni: 3. La tecnica delle costruzioni. Le pareti sottili, 3rd edn. Edizioni Scientifiche Einaudi, TorinoGoogle Scholar
  85. 85.
    Cook RD (1974) Concepts and applications of finite element analysis, 2nd edn. Wiley, New YorkGoogle Scholar
  86. 86.
    Cormac P (1936) A treatise on screws and worm gear, their mills and hobs. Chapman & Hall Ltd, LondonGoogle Scholar
  87. 87.
    Coulomb CA (1773) Essai sur une application des règles de maximis et de minimis à quelques problèmes de Statique relatifs à l’Architecture, aver 2 planches, Mémoires de mathématiques et de physique présentés a l’Academie Royale des sciences par divers savants, & Iûs dans ses assemlées, vol 7, à Paris: De l’Imprimerie Royale, pp 343–382Google Scholar
  88. 88.
    Coulomb CA (1781) Théorie des machines simples en ayant égard au frottement de leur parties et a la roider des Corages. Piece qui remporté le Prix double de l’Academie des Sciences pour l’année 1781. Mémoires de Mathematique et de Physique de l’Academie Royale des Sciences, pp. 145–173. A Paris, De l’Imprimerie de Montard, Imprimeur-Libraire de la Reine, de Madame, de Madame la Contesse d’Artois, & de l’Academie Royale de Sciences, 1782Google Scholar
  89. 89.
    Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49(1):1–23MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Couturat LL (1901) La logique de Leibniz d’après des documents inédits. Felix Alcan, Editeur, ParisGoogle Scholar
  91. 91.
    Crosher WP (2014) A gear chronology, significant events and dates affecting gear development. Book Publishers Xlibris LLC, BloomingtonGoogle Scholar
  92. 92.
    Cunningham FW (1957) Non-circular gears. Transactions of the 5th congress on mechanisms, Purdue University, West Lafayette, Ind., pp 96–103Google Scholar
  93. 93.
    Davydov JS (1944) Spur and helical involute pinions with crossed axes; influence of errors on accuracy of operation. Ph.D. thesis, maintained in Tomsk Polytechnic Institute (in Russian)Google Scholar
  94. 94.
    de Condorcet MJAN (1765) Essais sur le calcule intégral. De l’Imprimerie de Didot, ParisGoogle Scholar
  95. 95.
    De La Hire F (1694) Traité des Epicycloïdes, & de leurs usages dans les Mechaniques. In: Memoires de Mathematique et Physique. De l’Imprimerie Royale, A ParisGoogle Scholar
  96. 96.
    De La Hire F (1695) Traité de mécanique: ou l’on explique toot ce qui est nécessaire dans la pratique des arts, & les propriétés des corps pesants lesquelles ont un plus grand usage dans la physique. De l’Imprimerie Royale, A ParisGoogle Scholar
  97. 97.
    Del Monte G (1577) Mechanicorum liber. Apud Hieronymum Concordiam, PisauriGoogle Scholar
  98. 98.
    Denavit J, Hartenberg RS (1955) A kinematic notation for lower pair mechanisms based on matrices. ASME J Appl Mech 22:215–221Google Scholar
  99. 99.
    Descartes R (1644) Principia Philosophiae. apud Ludovicum Elzevirium, AmstelodamiGoogle Scholar
  100. 100.
    Descartes R (1637) Discours de la méthode pour bien conduire sa raison, et chercher la verité dans les sciences. Plus la Dioptrique. Les Meteores. Et la Geometrie. Qui sont des essais de fette Méthode. De l’Imprimerie de Ian Maire, LeydeGoogle Scholar
  101. 101.
    Disaguliers JT (1734) A course of experimental philosophy, 1st edn., vol I. W. Innys, M. Senex and T. Longman, LondonGoogle Scholar
  102. 102.
    Disaguliers JT (1744) A course of experimental philosophy, 1st edn., vol II. W. Innys, M. Senex and T. Longman, LondonGoogle Scholar
  103. 103.
    Disteli M (1914) Über des Analogen der Savary schen Formel und Konstruktion in der kinematischen Geometrie des Raumes. Zeitschrift für Mathematic und Physik 62:261–309Google Scholar
  104. 104.
    Dolan TJ, Broghammer EL (1942) A photoelestic study of stresses in gear tooth fillets. Bulletin 335, University of Illinois, Engineering Experimental StationGoogle Scholar
  105. 105.
    Dooner DB (2012) The kinematic geometry of gearing, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  106. 106.
    Dooner DB, Seireg AA (1995) The kinematic geometry of gearing: a concurrent engineering approach. Wiley, New YorkGoogle Scholar
  107. 107.
    Dowson D, Higginson GR (1959) A numerical solution to the elastohydrodynamic problem. J Mech Eng Sci 1(1):7–15zbMATHCrossRefGoogle Scholar
  108. 108.
    Dowson D, Higginson GR (1966) Elasto-hydrodynamic lubrication, SI edn. Pergamon Press, OxfordGoogle Scholar
  109. 109.
    Dowson D, Higginson GR (1977) Elastohydrodynamic lubrication, 2nd edn. Pergamon, LondonCrossRefGoogle Scholar
  110. 110.
    Drake S (1978) Galileo at work. His scientific biography. University of Chicago Press, ChicagoGoogle Scholar
  111. 111.
    Dudley DW (1954) Practical gear design. McGraw-Hill Book Company, New YorkGoogle Scholar
  112. 112.
    Dudley DW (ed) (1962) Gear handbook: the design, manufacture, and application of gears, 1st edn. McGraw-Hill Book Company, New YorkGoogle Scholar
  113. 113.
    Dupont P (1962/63) Nuove dimostrazioni della formula di Eulero-Savary e suo studio storico. Atti Accad Sci Torino Cl Sci Fis Mat Nat 97Google Scholar
  114. 114.
    Dürer A (1525) Underweysung der Messung, mit dem Zirckel und Richtscheyt in Lienen, Ebnen unnd gantzen Corporen (or Instructions for Measuring with Compass and Ruler). Hieronymus Andreae, Gedruckt zuo NürenbergGoogle Scholar
  115. 115.
    D’Alembert M (1743) Traité de Dynamique, dans lequel les Lois de l’Equilibre & du Mouvement des Corps sont réduites as plus petit nombre possible, & démontrées d’une maniére nouvelle, & où l’on donne un Principle général pour trouver le Mouvement de plusieurs Corps qui agissent les uns sur les autres, d’une maniére quelcomque, A Paris, Chez David l’aîné, LibraireGoogle Scholar
  116. 116.
    Ehret P, Dowson D, Taylor CM (1998) On the lubricant transport conditions in elastohydrodynamic conjunctions. Proc R Soc Lond, Ser A 454Google Scholar
  117. 117.
    Elkholy A (1983) Case depth requirements in carburized gears. Wear 88:S233–S244CrossRefGoogle Scholar
  118. 118.
    Ellenberger M, Collin M-M (1993) La machine à calculer de Blaise Pascal. Nathan, ParisGoogle Scholar
  119. 119.
    Ertel AM (1939) Hydrodynamic lubrication based on new principles. Akad Nauk SSSR Prikadnaya Mathematica i Mekhanika 3:41–52Google Scholar
  120. 120.
    Ertel AM (1945) Hydrodynamic lubrication analysis of a contact of curvilinear surfaces. Dissertation on Proceedings of CNIITMASH, Moscow, pp 1–64Google Scholar
  121. 121.
    Euler L (1736) Mechanica sive motus scientia analytice exposita, Tomus I et Tomus II, Instar Supplementi Ad Commentar. Acad. Scient. Imper. Petropoli, ex Typographia Academicae ScientiarumGoogle Scholar
  122. 122.
    Euler L (1751/54) De Aptissima Figura Rotarum Dentibus Tribuenda. Novi Commentarii Academiae Scientiarum PetropolitanaeGoogle Scholar
  123. 123.
    Euler L (1762/65) Supplementum the Figura Dentium Rotarum. Novi Commentarii Academiae Scientiarum Petropolitanae, pp 299–317Google Scholar
  124. 124.
    Fairbairn W (1863) Treatise on mills and millwork, part I. Longmans, Green and Company, LondonGoogle Scholar
  125. 125.
    Fairbairn W (1871) Treatise on mills and millwork, part II. Longmans, Green and Company, LondonGoogle Scholar
  126. 126.
    Fatemi A, Socie DF (1988) A critical plane to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 11(3):149–165Google Scholar
  127. 127.
    Fatemi A, Shamsaei N (2011) Multiaxial fatigue: an overview and some approximation models for life estimation. Int J Fatigue 33(8):948–958CrossRefGoogle Scholar
  128. 128.
    Fenner RT (1986) Engineering elasticity, application of numerical and analytical techniques. Ellis Horwood Limited Publishers, ChichesterGoogle Scholar
  129. 129.
    Ferrari C, Romiti A (1966) Meccanica Applicata alle Macchine. Unione Tipografica-Editrice Torinese, UTET, TorinoGoogle Scholar
  130. 130.
    Fisher A (1961) The use of speed factors in calculating the load carrying capacity of helical gears. Machinery 98(8):545–552Google Scholar
  131. 131.
    Fisher R, Kücükay F, Jürgens G, Najork R, Pollak B (2015) The automotive transmission book. Springer International Publishing Switzerland, ChamGoogle Scholar
  132. 132.
    Flamant A-A (1892) Sur la répartition des pressions dans un solide rectangulaire chargé trnsversalement. Comptes Rendus des Séances de l’Academie des Sciences, Paris 114:1465–1468Google Scholar
  133. 133.
    Flanders RE (1909) How many gashes should a hob have? MachineryGoogle Scholar
  134. 134.
    Flanders RE (1909) Interchangeable involute gear tooth systems. J Am Soc Mech Eng 1501–1520Google Scholar
  135. 135.
    Flanders RE (1909) Gear-cutting machinery, comprising a complete review of contemporary American and European practice, together with a logical classification and explanation of the principles involved. Wiley, New YorkGoogle Scholar
  136. 136.
    Ford H, Alexander JM (1963) Advanced mechanics of materials, 2nd edn. Ellis Horwood, ChichesterGoogle Scholar
  137. 137.
    Foullon A (1563) Usaige et description de l’holometre pour savoir mesurer toutes choses qui sont soubs l’estendue de l’oeil. chez Pierre P. Béguin, A ParisGoogle Scholar
  138. 138.
    Francis V, Silvagi J (1950) Face gear design factors. Prod Eng 21:117–121Google Scholar
  139. 139.
    Franklin J (2017) Discrete and continuous: a fundamental dichotomy in mathematics. J Hum Math 7(2):356–378MathSciNetCrossRefGoogle Scholar
  140. 140.
    Franklin LJ, Smith CH (1924) Effect of inaccuracies on strength of gears. Trans ASME 46Google Scholar
  141. 141.
    Föppl AO (1897) Vorlesung über technische Mechanik, Band III, Festigkeitslehre. Teubner Verlag, LeipzigGoogle Scholar
  142. 142.
    Föppl AO (1909) Mitt Mech Tech Lab. Technischen Hochschule, Munich, nr. 31Google Scholar
  143. 143.
    Föppl AO (1914) Vorlesung über technische Mechanik, Band IV, Dynamik. Teubner Verlag, LeipzigGoogle Scholar
  144. 144.
    Föppl AO, Föppl L (1920) Drang und Zwang: eine höhere festigkeitslehre für ingenieure, 2 vols. R. Oldenbourg, München und BerlinGoogle Scholar
  145. 145.
    Galilei G (1594) Delle Meccaniche lette in Padova l’anno 1594 da Galileo Galilei. Memorie del Reale Istituto Veneto di Scienze, Lettere ed Arti, vol XXVI (5). Tipografia C. Ferrari, Venezia (reprint of 1899)Google Scholar
  146. 146.
    Galilei G (1638) Discorsi e Dimostrazioni Matematiche, intorno a due Nuove Scienze attinenti alla Meccanica & i Movimenti Locali. Appresso gli Elsevirii, LeidaGoogle Scholar
  147. 147.
    Garro A, Vullo V (1978) Alcune considerazioni sul proporzionamento degli ingranaggi. Atti del VI Convegno Nazionale AIAS, Brescia, 22–24 giugnoGoogle Scholar
  148. 148.
    Garro A, Vullo V (1979) Acoustic problems in vehicle transmissions. Nauka I Motorna vozila ‘79, Science and Motor Vehicles ‘79, Bled, Slovenija, Jugoslavija, 4–7 JuneGoogle Scholar
  149. 149.
    Gautschi W (2008) Leonhard euler: his life, the man, and his works. SIAM Rev 50(1):3–33MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    Gere JM, Timoshenko SP (1997) Mechanics of materials. PWS Publishing Company, BostonGoogle Scholar
  151. 151.
    Ghribi D, Octrue M (2014) Some theoretical and simulation results on the study of the tooth flank breakage in cylindrical gears. In: International gear conference 2014, Lyon, France, 26–28 AugGoogle Scholar
  152. 152.
    Giovannozzi R (1951) Costruzione di Macchine, vol II, 2th edn. Casa Editrice Prof. Riccardo Pàtron, BolognaGoogle Scholar
  153. 153.
    Giovannozzi, R (1965) Costruzione di Macchine, vol II, 4th edn. Casa Editrice Prof. Riccardo Pàtron, BolognaGoogle Scholar
  154. 154.
    Giovannozzi R (1965) Costruzione di Macchine, vol I, 2nd edn. Casa Editrice Prof. Riccardo Pàtron, BolognaGoogle Scholar
  155. 155.
    Gladwell GML (1980) Contact problems in the classical theory of elasticity. Sijthoff & Noordhoff International Publishers B.V., Germantown, Maryland, USA: Alphen aar den Rijn, The NetherlandsGoogle Scholar
  156. 156.
    Gobler HE (1939) Rollcurve gears. Trans ASME 61:223–231Google Scholar
  157. 157.
    Gochman CI (1941) Control of spur pinions by means of wires. J Opt Mech Ind 6Google Scholar
  158. 158.
    Goglia PR, Cusano C, Conry TF (1984) The effects of surface irregularities on the elastohydrodynamic lubrication of sliding line contacts. Part I-Single Irregul ASME J Tribol 106(1):104–112Google Scholar
  159. 159.
    Goglia PR, Cusano C, Conry TF (1984) The effects of surface irregularities on the elastohydrodynamic lubrication of sliding line contacts. Part II-Wavy Surf ASME J Tribol 106(1):113–119CrossRefGoogle Scholar
  160. 160.
    Goldfarb V, Barmina N (eds) (2016) Theory and practice of gearing and transmissions, in honor of Professor Faydor L. Litvin. Springer International Publishing Switzerland, BerlinGoogle Scholar
  161. 161.
    Grant GB (1885) A handbook on the teeth of gears, their curves, properties and practical construction. Grant Gear Works, BostonGoogle Scholar
  162. 162.
    Grant GB (1891) Odontics, or, the theory and practice of the teeth of gears. Lexington Gear Works, LexingtonGoogle Scholar
  163. 163.
    Grant GB (1899) A treatise on gear wheels, 8th edn. Grant Gear Works, BostonGoogle Scholar
  164. 164.
    Grubin AN, Vinogradova IE (1949) Investigation of the contact of machine components. Central scientific research institute for technology and mechanical engineering, Book no 30, Moscow, D.S.I.R. translation no 337Google Scholar
  165. 165.
    Guingand M, de Vaujany J-P, Jacquin C-Y (2005) Quasi-static analysis of a face gear under torque. Comput Methods Appl Mech Eng 194:4301–4318zbMATHCrossRefGoogle Scholar
  166. 166.
    Hamming PW (1959) Stable predictor-corrector methods for ordinary differential equations. J Assoc Comput Math 6MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    Hamrock BJ, Dowson D (1977) Isothermal elastohydrodynamic lubrication of point contact: part III—fully flooded results. ASME J Lubr Technol 99(2):264–275CrossRefGoogle Scholar
  168. 168.
    Hamrock BJ, Dowson D (1981) Ball bearing lubrication, the elastohydrodynamics of elliptical contacts. Wiley, New YorkGoogle Scholar
  169. 169.
    Handschuh RF, Lewicki DG, Bossler RB (1994) Experimental testing of prototype face gears for helicopter transmissions. Proc Inst Mech Eng Part G: J Aerosp EngGoogle Scholar
  170. 170.
    Harrison J (1767) The principles of Mr Harrison’s time-keeper with plates of the same. London: W. Richardson & S. ClarkGoogle Scholar
  171. 171.
    Heath GF, Filler RR, Tan J (2002) Development of face gear technology for industrial and aerospace power transmission. NASA/CR-2002-211320, ARL-CR-0485, 1L18211-FR-01001, MayGoogle Scholar
  172. 172.
    Hein M, Tobie T, Stahl K (2017) Parameter study on the calculated risk of tooth flank fracture of case-hardened gears. Bull JSME J Adv Mech Des Syst Manuf II(6)Google Scholar
  173. 173.
    Henchy H (1924) Zur Theorie plastischen Deformationen und hierdurch in Material hervorgerufenen Nebenspannungen. In: Proceedings of 1st international congress for applied mechanics, deft, pp 312–317Google Scholar
  174. 174.
    Henriot G (1949) Traité Théorique et Pratique des Engrénages, tome I. Dunod, ParisGoogle Scholar
  175. 175.
    Henriot G (1950) Traité théorique et pratique des engrenages, tome II, Étude complète du material. Dunod, ParisGoogle Scholar
  176. 176.
    Henriot G (1960) Traité théorique et pratique des engrenages, Tome I, Théorie et technologie, 3rd edn. Dunod, ParisGoogle Scholar
  177. 177.
    Hertter T (2003) Rechnirischer Festigkeitsnachweis der Ermüdungstragfähigkeit vergüteter und einsatzgehärteter Zahnräder. Ph.D. thesis, Technical University of MunichGoogle Scholar
  178. 178.
    Hertz HR (1882) Über die Berührung fester elastischer Körper. Journal für Reine und Angewandte Mathematik (Crelle’s J.) 92:156–171Google Scholar
  179. 179.
    Heyman J (1998) Structural analysis, a historical approach. Cambridge University Press, CambridgeGoogle Scholar
  180. 180.
    Heywood RB (1948) Modern applications of photoelasticity. Proc Inst Mech Eng 158(2):235–250CrossRefGoogle Scholar
  181. 181.
    Heywood RB (1952) Designing by photoelasticity. Chapman & Hall, Lmt., LondonGoogle Scholar
  182. 182.
    Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordGoogle Scholar
  183. 183.
    Holditch H (1842) On rolling curves. Trans Camb Philos Soc 7(7):61–82Google Scholar
  184. 184.
    Holm R (1946) Electric contacts. Hugo Gerbers Forlag, StockholmGoogle Scholar
  185. 185.
    Hooke R (1678) Lectures de Potentia Restitutiva or of Spring explaining the power of springing bodies, to which are added some collections. John Martyn Printer to the Royal Society, LondonGoogle Scholar
  186. 186.
    Hooke R (1679) Lectiones Cutlerianae or a Collection of lectures: physical, mathematical, geographical & astronomical. Printed for John Martyn Printer to the Royal Society, at the Bell in S. Paul’s Charch-yard, LondonGoogle Scholar
  187. 187.
    Houbolt JC (1950) A recurrence matrix solution for the dynamic response of elastic aircraft. J Aeronaut Sci 540–550MathSciNetCrossRefGoogle Scholar
  188. 188.
    Huber MT (1904) A contribution to fundamentals of the strength of materials. Czasopismo Tow. Technicze Krakow 22:81 (in Polish)Google Scholar
  189. 189.
    Huygens C (1673) Horologium Oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geometricae. Apud F. Muguet, MDCLXXIII, ParisiisGoogle Scholar
  190. 190.
    Huygens CE (1986) The pendulum clock or geometrical demonstrations concerning the motion of pendula as applied to clocks (trans: Blackwell RJ). Iowa State University Press, AmesGoogle Scholar
  191. 191.
    Höhn B-R, Oster P, Emmert S (1996) Micropitting in case-carburized gears—FZG micropitting test. In: International conference on gears, Dresden, Germany, VDI Berichte Nr. 1230, pp 331–334Google Scholar
  192. 192.
    Imison J (1787) A treatise on the mechanical powers. Printed by the author, and sold by R. Jameson, LondonGoogle Scholar
  193. 193.
    Irgens F (2010) Continuum mechanics. Springer, BerlinGoogle Scholar
  194. 194.
    Ishida K (1977) Computer simulation of stresses and deformations of gear case, and of gear teeth taking the influence of gear body into consideration. World Congress on Gearing, Paris, 22–24 June 1977, pp. 309–323Google Scholar
  195. 195.
    Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeGoogle Scholar
  196. 196.
    Jonhson KL (1995) Contact mechanics and the wear of metals. Wear 190(2):162–170CrossRefGoogle Scholar
  197. 197.
    Kapelevich AL (2013) Direct gear design. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  198. 198.
    Karas F (1941) Elastische Formänderung und Lastverteilung beim Doppeleingriff gerader Stirnradzähne, VDI – Forschungheft 406, B, Bd. 12Google Scholar
  199. 199.
    Katchanov L (1975) Éléments de la Théorie de la Plasticité. Éditions MIR, MoscouGoogle Scholar
  200. 200.
    Kelley B-W, Pedersen R (1958) The beam strength of modern gear tooth design. SAE Trans 66:137–157, and SAE Technical Paper 580017, 1958Google Scholar
  201. 201.
    Keplero I (1596) Prodomus dissertationum cosmographicarum, contineus mysterium cosmographicum, de admirabili proportione orbium coelestium, de que causis coelorum numeri, magnitudinis, motuumque periodicorum genuinis & propriis, demonstratum, per quinque regularia corpora geometrica (i.e. Forerunner of the Cosmological Essays, wich contains the secret of the Universe; on the Marvelous Proportion of the Celestial Spheres, and on the True and Particular Causes of the Number, Magnitude, and Periodic Motions of the Heavens; Established by means of the Five Regular Geometric Solids). excudebat Georgius Gruppenbachius, TubingaeGoogle Scholar
  202. 202.
    Kissling U, Beermann S (2007) Face gears: geometry and strength. Gear Technol 54–61Google Scholar
  203. 203.
    Klein M, Höhn BR, Michaelis K, Annast R (2011) Theoretical and experimental investigations about flank breakage in bevel gears. Ind Lubr Tribol 63(1):5–10CrossRefGoogle Scholar
  204. 204.
    Kolchin NI (1949) Analytical calculation of planar and spatial gearings. Mashgiz, Moscow-LeningradGoogle Scholar
  205. 205.
    Kolchin NI (1949) Main problems of the theory of non-circular gearwheels. In: Proceedings of LONITOMASH, 6, Theory and analysis of gearwheels. Mashgiz, Moscow-LeningradGoogle Scholar
  206. 206.
    Kramberger J, Šraml M, Glodez S, Flašker J, Potrč I (2004) Computational model for the analysis of bending fatigue in gears. Comput Struct 82(23):2261–2269CrossRefGoogle Scholar
  207. 207.
    Kulkarni S, Kajale P, Patil DU (2015) Recirculating Ball Screw. Int J Eng Res Sci Technol 4(2):252–257Google Scholar
  208. 208.
    Kurrer K-E (2008) The History of the Theory of Structures: from arch analysis to computational mechanics. Ernst & Sohn Verlag, BerlinGoogle Scholar
  209. 209.
    Lagrange J-L (1788) Méchanique Analitique, 1re éd. Chez La Veuve Desaint, Libraire, A ParisGoogle Scholar
  210. 210.
    Lagutin S, Barmina N (2016) Prof. F.L. Litvin: Contribution to the Formation of the Russian School of the theory of gearing. In: Gotfard V, Barmina N (eds) Theory and practice of gearing and transmissions in honor of Professor Faydor L. Litvin. Springer International Publishing Switzerland, ChamGoogle Scholar
  211. 211.
    Lalovera A (1660) Veterum Geometrica promota in septem de Cycloide Libris et in duobus adjectis Apprendicibus. apud Arnaldum Colomerium, ToulouseGoogle Scholar
  212. 212.
    Lamé G (1852) Leçons sur la théorie mathématique de l’élasticité des corps solides. Bachelier, Imprimeur-Libraire, ParisGoogle Scholar
  213. 213.
    Lang OR (1988) Berechnung und Auslegung induktiv gehärteter Bauteile. Berichtsband zur AWT-Tagung, Induktives Randschichthärten, DarmstadtGoogle Scholar
  214. 214.
    Langlois P, Al BC, Harris O (2016) Hybrid Hertzian and FE-Based Helical Gear-loaded Tooth Contact Analysis and Comparison with FE. Gear Technol 54–63Google Scholar
  215. 215.
    Lasche O (1899) Elektrischer Antrieb mittels Zahnradübertragung. VDI – Zeitschrift 43(48):1487–1493, (49):1528–1533Google Scholar
  216. 216.
    Lechner G, Naunheimer H (1999) Automative transmissions: fundamentals, selection, design and applications. Springer, BerlinGoogle Scholar
  217. 217.
    Leibniz GW (1684) Nova Methodus pro Maximis et minimis, itemque tangentibus, que nec fractas, nec irrationales quantitates moratur, & singulare pro illis calculi genus. Acta Editorum, Lipsiae, pp 467–473Google Scholar
  218. 218.
    Leibniz GW (2000) Discoveries of Principle of the Calculus in (Acta Editorum) (trans: Beaudry P). Leesburg, VA, USA, Sept, pp 60–61Google Scholar
  219. 219.
    Leslie J (1829) Elements of natural philosophy, including mechanics and hydrostatics, 2nd edn. Olivier and Boyd, and G.B. Whittaker, LondonGoogle Scholar
  220. 220.
    Levy S (1953) Structural analysis and influence coefficients for delta winds. J Aeronaut Sci 20(7):449–454zbMATHCrossRefGoogle Scholar
  221. 221.
    Lewicki DG, Handschuh RF, Heath GF, Sheth V (1999) Evaluation of carbonized face gears. The American helicopter society 55th annual forum, Montreal, CanadaGoogle Scholar
  222. 222.
    Lewis W (1892) Investigation of strength of gear teeth. Proc Eng Club, Philadelphia, Pennsylvania, USA, Oct, pp 16–23Google Scholar
  223. 223.
    Li S, Kahraman A (2013) A physics-based model to predict micro-pitting lives of lubricated point contacts. Int J Fatigue 47:205–215CrossRefGoogle Scholar
  224. 224.
    Li S, Kahraman A (2013) Micro-pitting fatigue lives of lubricated point contacts: experiments and model validation. Int J Fatigue 48:9–18CrossRefGoogle Scholar
  225. 225.
    Litvin FL (1955) Application of matrices and dual number calculations to analysis of spatial gearings. Proc Leningr Polytech Inst 182 (in Russian)Google Scholar
  226. 226.
    Litvin FL (1956) Non circular gears: design, theory of gearing, and manufacture, 2nd edn. Gos. Tech. Isdat, Leningrad-Moscow (in Russian)Google Scholar
  227. 227.
    Litvin FL (1994) Gear geometry and applied theory. PTR Prentice Hall, Prentice Hall Inc., Englewood CliffsGoogle Scholar
  228. 228.
    Litvin FL, Fuentes A (2004) Gear geometry and applied theory, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  229. 229.
    Litvin FL, Chen YS, Heath GF, Sheth VJ, Chen N (2000) Apparats and method for precision grinding face gears. U.A. Patent No. 6.146.253Google Scholar
  230. 230.
    Litvin FL, Wang JC, Bossler RB Jr, Chen Y-JD, Heath G, Lewicki DG (1992) Application of face-gear drives in helicopter transmission. In: Proceeding of the 6th international power transmission and gearing conference, Scottsdale, Arizona, 13–16 Sept, and NASA Technical Memorandum 105655, AVSCOM Technical Report 91-C-036Google Scholar
  231. 231.
    Liu H, Liu H, Zhu C, Zhou Y (2019) A review on micropitting studies of steel gears. Coatings 9(1):42CrossRefGoogle Scholar
  232. 232.
    Logue CH (1922) American mechanist gear book, 3rd edn. revised by R. Trautschold. McGraw-Hill Book Company, Inc., New YorkGoogle Scholar
  233. 233.
    Long H, Al-Tubi IS, Martinze MTM (2015) Analytical and experimental study of gear surface micropitting due to variable loading. Appl Mech Mater 750:96–103CrossRefGoogle Scholar
  234. 234.
    Loveless WG (1984) Cone drive double enveloping worm gearing design & manufacturing. Gear Technol 12–16, 45Google Scholar
  235. 235.
    Lovász L (2000) Discrete and continuous: two sides of the same? GAFA geometric and functional analysis. Birkhäuser Verlag, Basel, pp 359–382CrossRefGoogle Scholar
  236. 236.
    Mac Curdy E (1938) Leonardo da Vinci notebooks. Jonathan Cape, LondonGoogle Scholar
  237. 237.
    MackAldener M (2001) Tooth interior fatigue fracture and robustness of gears. Doctoral Thesis, KTH StockholmGoogle Scholar
  238. 238.
    MackAldener M, Olsson M (2000) Interior fatigue fracture of gear teeth. Fatigue Fract Eng Mater Struct 23(4):283–292Google Scholar
  239. 239.
    MackAldener M, Olsson M (2000b) Design against tooth interior fatigue fracture. Gear Technol 18–24Google Scholar
  240. 240.
    MackAldener M, Olsson M (2001) Tooth interior fatigue fracture. Int J Fatigue 23:329–340Google Scholar
  241. 241.
    MackAldener M, Olsson M (2002) Analysis of crack propagation during tooth interior fatigue fracture. Eng Fract Mech 69(18):2147–2162CrossRefGoogle Scholar
  242. 242.
    Maitra GM (1994) Handbook of gear design, 2nd edn. Tata McGraw-Hill Publishing Company Ltd., New DelhiGoogle Scholar
  243. 243.
    Mancosu P (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press, New YorkGoogle Scholar
  244. 244.
    Mariotte E (1686) Traité du mouvement des eaux. Michallet, ParisGoogle Scholar
  245. 245.
    Martin HM (1916) The lubrication of gear teeth. Engineering 102:199–204Google Scholar
  246. 246.
    Marx GH, Cutter LE (1915) Strength of gear system. Trans ASME 37Google Scholar
  247. 247.
    Maugin GA (2017) Continuum mechanics through the ages—from the renaissance to twentieth century: from hydraulics to plasticity. Springer, BerlinGoogle Scholar
  248. 248.
    Maxwell JC (1856) Letter to Lord Kelvin, Dec 18 (pertinent portion of letter quoted by Nadai, Theory of flow and Fracture of solids, vol II, p 43)Google Scholar
  249. 249.
    McDonnell A (2007) Jesse Ramsden (1735–1800): London’s leading scientific instruments maker. Ashgate Publishing Limited, AldershotGoogle Scholar
  250. 250.
    McMullen FE, Durcan TM (1922) The Gleason works system of bevel gears. Machinery, JuneGoogle Scholar
  251. 251.
    Melosh RJ (1963) Basis for derivation of matrices for the direct stiffness method. J Am Inst Aeronaut Astronaut 1(7):1631–1637CrossRefGoogle Scholar
  252. 252.
    Menabrea LF (1858) Nouveau principe sur la distribution des tensions dans les systèmes élastiques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 46:1056–1060Google Scholar
  253. 253.
    Merritt HE (1935) Worm gear performance. Institution of Mechanical EngineersGoogle Scholar
  254. 254.
    Merritt HE (1937) The lubrication of gear teeth. Institution of mechanical engineers, general discussion on lubrication and lubricants, group III, industrial applications, OctGoogle Scholar
  255. 255.
    Merritt HE (1946) Gears, 2nd edn. Sir Isaac Pitman & Sons Ltd, LondonGoogle Scholar
  256. 256.
    Merritt HE (1954) Gears, 3rd edn. Sir Isaac Pitman & Sons Ltd., LondonGoogle Scholar
  257. 257.
    Meyer PB (2011) The Wilson preselector gearbox, armstrong-siddley type. PBM Verlag, Seevetal, HamburgGoogle Scholar
  258. 258.
    Minotti M, Salvini P, Vivio F, Vullo V (2007) Metodo di taglio di viti e ruote in un riduttore a viti e ruota con ricircolazione di sfere. Atti XXXVI Convegno Nazionale AIAS, Ischia, 04–07 SeptGoogle Scholar
  259. 259.
    Modugno F (1940) Teoria e Costruzione degli Ingranaggi ad Assi Paralleli con Applicazione ai Riduttori Marini. Arti Grafiche Panetto & Petrelli, S.A. SpoletoGoogle Scholar
  260. 260.
    Modugno F (1951) Ingranaggi Cilindrici. Editore Ulrico Hoepli, MilanoGoogle Scholar
  261. 261.
    Mohr O (1882) Über die Darstellung des Spannungszustandes und des Deformationszustandes eines Körperelementes. Zivilingenieur, p 113Google Scholar
  262. 262.
    Mohr O (1906) Abhandlungen aus dem Gebiete der technischen Mechanik. Wilhelm Ernst und Sohn, BerlinGoogle Scholar
  263. 263.
    Moon FC (2007) The Machines of Leonardo Da Vinci and Franz Reuleaux, Kinematics of machines from the renaissance to the 20th century. Springer, DordrechtGoogle Scholar
  264. 264.
    Nadai A (1933) Theories of strength. ASME J Appl Mech 1(3):111–129Google Scholar
  265. 265.
    Nadai A (1937) Plastic behavior of metals in the strain hardening range. J Appl Phys 205–213Google Scholar
  266. 266.
    Nadai A (1950) Theory of flow and fracture of solids, vol I. McGraw-Hill Book Company Inc., New YorkGoogle Scholar
  267. 267.
    Nadai A (1963) Theory of flow and fracture of solids, vol II. McGraw-Hill Book Company Inc., New YorkGoogle Scholar
  268. 268.
    Naunheimer H, Bertsche B, Ryborz J, Novak W (2011) Automotive transmissions: fundamentals, selection, design and application, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  269. 269.
    Navier CLMN (1823) Mémoire sur la flexion des planes élastiques, présenté à l’Académie des Sciences de France, 1820, and publied in the Bulletin des Sciences de la Societé Philo-Mathematique de ParisGoogle Scholar
  270. 270.
    Neuber H (1934) Ein neuer Ansatz zur Lösung räumlicher Problem der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel. Zeitschrift für Angewandte Mathematik und Mechanik 14(4):203–212zbMATHCrossRefGoogle Scholar
  271. 271.
    Newmark NM (1959) A method of computation for structural dynamics. Proc ASCE 85(EM3):67–94Google Scholar
  272. 272.
    Newton I (1687) Philosophiae Naturalis Principia Mathematica, 1st edn. Jussu Societatis Regiae ac Typis Josephi Streater, Londinii, Anno MDCLXXXVIIGoogle Scholar
  273. 273.
    Niemann G (1954) Maschinenelemente: Band 2: Getriebe allgemein, Zahnradgetriebe- Grundlagen, Stirnradgetriebe. Springer, BerlinGoogle Scholar
  274. 274.
    Niemann G (1960) Maschinenelemente. Entwerfen, Berechnen und Gestalten im Maschinenbau. Zweiter Band: Getriebe. Getriebearten, Zahnradgetriebe, Stirnräder, Kegelräder und versetzte Kegelräder, Schneckentriebe, zylindrische Schraubenräder, Kettentriebe, Reibräder und Regelreibgetriebe, Reibkupplungen und Reibbremsen, Richtungskupplungen, Freiläufe, Gesperre. Springer, BerlinGoogle Scholar
  275. 275.
    Niemann G, Glaubitz H (1950) Zahnfußfestigkeit geradverzahnter Stirnräder aus Stahl, VDI – Zeitschrift 92(33):923–932Google Scholar
  276. 276.
    Niemann G, Glaubitz H (1951) Zahnfußfestigate geradverzahnter Stirnräder aus Stahl. VDI - Zeirschrift 92(93):1050–1053Google Scholar
  277. 277.
    Niemann G, Rettig H (1956) Untersuchungen an Blechzahnrädern. Mitt. Forsch. Ges. Blechverarb, SeptGoogle Scholar
  278. 278.
    Niemann G, Winter H (1983) Maschinen-Elemente Band II: Getriebe allgemein, Zahnradgetriebe-Grundlagen, Stirnradgetriebe. Springer, BerlinGoogle Scholar
  279. 279.
    Niemann G, Winter H (1983) Maschinen-Elemente, Band III: Schraubrad-, Kegelrad-, Schnecken-, Ketten-, Rienem-, Reibradgetriebe, Kupplungen, Bremsen, Freiläufe. Springer, BerlinGoogle Scholar
  280. 280.
    Niemann G, Rettig H, Lechner G (1963) Some Possibilities to Increase the Load-Carrying-Capacity of Gears. SAE Technical Paper 630457Google Scholar
  281. 281.
    Novozhilov VV (1958) Theory of elasticity. Sudpromgiz, Moscow (in Russian, Teoriya uprugosti)Google Scholar
  282. 282.
    Octrue M, Ghribi D, Sainsot P (2018) A contribution to study the theory flank fracture (TFF) in cylindrical gears. Procedia Eng 213:215–226Google Scholar
  283. 283.
    Olivier T (1842) Theorié Géométrique des Engrenages destines à transmettre le movement de rotation entre deux axes situés ou non dans un même plane. Bachelier Imprimeur-Libraire, ParisGoogle Scholar
  284. 284.
    Ollson U (1953) Non-circular cylindrical gears, Mechanical engineering series (10). Acta Polytechnica, StockholmGoogle Scholar
  285. 285.
    Ollson U (1959) Non-circular bevel gears, Mechanical engineering series (5). Acta Polytechnica, StockholmGoogle Scholar
  286. 286.
    Oster P (1982) Beanspruchung der Zahnflanken unter Bedingungen der Elastohydrodynamik. Doctoral Thesis, Technical Univesity of MunichGoogle Scholar
  287. 287.
    Özgüven HN, Houser DR (1988) Mathematical models used in gear dynamics—a review. J Sound Vib 121(3):383–411Google Scholar
  288. 288.
    Panjkovic V (2014) Friction and hot rolling of steel. CRC Press, Taylor&Frencis Group, Boca RatonGoogle Scholar
  289. 289.
    Parent A (1713) Essais et recherches de mathématique et de physique. J. de Nully, ParisGoogle Scholar
  290. 290.
    Pascal B (1779) Oeuvres de Blaise Pascal. Chez Detune, La HayeGoogle Scholar
  291. 291.
    Paul P (1968) Generalized pyramidal fracture and yield criteria. Int J Solids Struct 4:175–196zbMATHCrossRefGoogle Scholar
  292. 292.
    Pedersen R, Rice RL (1961) Case crushing of carburized and hardened gears. SAE Technical Paper 610031 and SAE Transactions, SAE Transactions, Warrendale, PA, pp S360–S370Google Scholar
  293. 293.
    Peterson RE (1933) Stress concentration phenomena in fatigue of metals. Trans ASME J Appl Mech 55:157–171Google Scholar
  294. 294.
    Peterson RE, Wahl AM (1936) Two- and three-dimensional cases of stress concentration and comparison with fatigue tests. Trans ASME J Appl Mech 58:15–22Google Scholar
  295. 295.
    Poisson SD (1829) Mémoire sur l’équilibre et le mouvement des corps solides. Mémoires de l’Académie des Sciences de l’Institut de France, Paris 8:357–570Google Scholar
  296. 296.
    Polder JW (1987) Influence of geometrical parameters on the gear scuffing criterion—part 1. Gear Technol 28–34Google Scholar
  297. 297.
    Pollone G (1937) Costruzioni Automobilistiche. Il Veicolo. Soc. An. Azienda Anonima Editoriale Libraria, TorinoGoogle Scholar
  298. 298.
    Pollone G (1957) Costruzioni Automobilistiche. Il Veicolo, 2nd edn. Libreria Editrice Universitaria Levrotto & Bella, TorinoGoogle Scholar
  299. 299.
    Pollone G (1970) Il Veicolo, 3rd edn. Libreria Editrice Universitaria Levrotto & Bella, TorinoGoogle Scholar
  300. 300.
    Pomini O (1920) Costruzione di Macchine. IV. Ingranaggi, Cinghie – Corde – Catene di Trasmissione. Ulrico Hoepli Editore Librario della Real Casa, MilanoGoogle Scholar
  301. 301.
    Przemieniecki JS (1968) Theory of matrix structural analysis. McGraw-Hill, New YorkGoogle Scholar
  302. 302.
    Radzevich SP (2012) Dudley’s handbook of practical gear design and manufacture, 2nd edn. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  303. 303.
    Radzevich SP (2013) Theory of gearing: kinematics, geometry, and synthesis. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  304. 304.
    Radzevich SP (2016) Dudley’s handbook of practical gear design and manufacture, 3rd edn. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  305. 305.
    Radzevich SP (2017) Gear cutting tools: science and engineering, 2nd edn. CRC Press, Taylor & Frencis Group, Boca RatonGoogle Scholar
  306. 306.
    Radzevich SP (2018) Theory of gearing: kinematics, geometry and synthesis, 2nd edn. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  307. 307.
    Ramsden J (1777) Description of an engine for dividing mathematical instruments. Publisher William Richardson, LondonGoogle Scholar
  308. 308.
    Ree T, Eyring H (1955) Theory of non-newtonian flow. I. Solid plastic system. J Appl Phys 26(7):793–800zbMATHCrossRefGoogle Scholar
  309. 309.
    Ree T, Eyring H (1955) Theory of non-newtonian flow. II? Solution system of high polymers. J Appl Phys 26(7):800–809zbMATHCrossRefGoogle Scholar
  310. 310.
    Rescher N (2012) Leibniz and cryptography. University of Pittsburgh, University Library Systems, PittsburghGoogle Scholar
  311. 311.
    Reuleaux F (1861) Der Constructeur. Ein Handbuch sum Gebrauch beim Maschinen-Entwerfen. Vieweg und Sohn, Braunschweig (trans: English as The Constructor: a handbook of machine design, in 1893 by H.H. Suplee, Philadelphia)Google Scholar
  312. 312.
    Reuleaux F (1875) Theoretische Kinematik; grundzüge einer Theorie des Maschinenwesens. Verlag Vieweg & Sohn, BraunschweigGoogle Scholar
  313. 313.
    Reye T (1860) Zur theorie der zapfenreibung. Der Civilingenieur 4:235–255Google Scholar
  314. 314.
    Reynolds O (1876) On rolling friction. Philos Trans R Soc Lond 166:155–171Google Scholar
  315. 315.
    Ristivojević M, Lazovic T, Venci A (2019) Studying the load carrying capacity of spur gear tooth flanks. Mech Mach Theory 59:125–137CrossRefGoogle Scholar
  316. 316.
    Ritter GDA (1863) Elementare Theorie und Berechnung eiserner Dach-und Brücken- Constructionen. Rümpler, HannoverGoogle Scholar
  317. 317.
    Ritter GDA (1865) Lehrbuch der Technischen Mechanik. Baumgärtner, LipsiaGoogle Scholar
  318. 318.
    Ritter GDA (1873) Lehrbuch der Höheren Mechanik. Baumgärtner, LipsiaGoogle Scholar
  319. 319.
    Rosenfield AR (1990) Wear and fracture mechanics: are they related? Scripta Metallurgica et Materialia 24(5):811–814CrossRefGoogle Scholar
  320. 320.
    Ross AA (1927) High speed gears. American Gear Manufacturers Association PaperGoogle Scholar
  321. 321.
    Russo L (2015) La rivoluzione dimenticata. Il pensiero scientifico greco e la scienza moderna, 9th edn. Giangiacomo Feltrinelli Editore, MilanoGoogle Scholar
  322. 322.
    Rycerz P, Kadiric A (2019) The influence of slide-roll ratio on the extend of micropitting damage in rolling-sliding contacts pertinent to gear applications. Tribol Lett 67(2):1Google Scholar
  323. 323.
    Saint-Venant, de Barré AJC (1855) De la torsion des prismes, avec des considérations sur leur flexion ainsi que sur l’équilibre des solides élastiques en général et des formules pratiques pour le calcul de leur résistance á divers efforts s’exerçant simultanément. Mém. Acad. Sci. Savants Étrangers, vol XIV, pp 233–560Google Scholar
  324. 324.
    Sandberg E (1981) A calculation method for subsurface fatigue. In: International symposium in gearing and power transmissions, Tokyo, I, pp S429–S434Google Scholar
  325. 325.
    Sang E (1838) Essays on the forms of the teeth of wheels. Part I. Wheels with the axes parallel to each other. Edinb New Philos J 24:217Google Scholar
  326. 326.
    Sang E (1852) A new general theory of the teeth of wheel. Rev Pract Mech J 5Google Scholar
  327. 327.
    Schiebel A (1912) Zahnräder, I. Teil, Stirn- und Kegelräder mit geraden Zähnen. Verlag von Julius Springer, BerlinGoogle Scholar
  328. 328.
    Schiebel A (1913) Zahnräder, II. Teil, Räder mit schrägen Zähnen. Verlag von Julius Stinger, BerlinGoogle Scholar
  329. 329.
    Schiebel A, Lindner W (1954) Zahnräder: Erster Band, Stirn- und Kegelräder mit geradenZähnen. Springer Verlaine, BerlinGoogle Scholar
  330. 330.
    Schiebel A, Lindner W (1957) Zahnräder: Zweiter Band, Stirn- und Kegelräder mit schrägen Zahnen Schraubgetriebe. Springer Verlaine, BerlinGoogle Scholar
  331. 331.
    Schütz W (1996) A history of fatigue. Eng Fract Mech 54:263–300CrossRefGoogle Scholar
  332. 332.
    Shames IH, Cozzarelli FA (1997) Elastic and inelastic stress analysis. Taylor & Francis Ltd., PhiladelphiaGoogle Scholar
  333. 333.
    Sharma VK, Breen DH, Walter GH (1977) An analytical approach for establishing case depth requirements in carburized and hardened gears. Transaction of ASME for presentation at the design engineering technical conference, Sept, Chicago, IL, pp 26–30Google Scholar
  334. 334.
    Shotter BA (1981) Micropitting: its characteristics and implications on the test requirements of gear oils. In: Performance testing of gear oils and transmission fluids, Institute of Petroleum, pp 53–59, 320–323Google Scholar
  335. 335.
    Socie DF, Marquis G (1999) Multiaxial fatigue, R-234. SAE International Publisher, New YorkCrossRefGoogle Scholar
  336. 336.
    Stahl K, Hein M, Tobie T (2018) Calculation of tooth flank fracture load capacity. Gear SolutGoogle Scholar
  337. 337.
    Stolze CH (1978) A history of the divergence theorem. Historia Mathematica 5(4):437–442MathSciNetzbMATHCrossRefGoogle Scholar
  338. 338.
    Stribeck R (1894) Die Abnutzung den Zahnräder und ihre Folgen. VDI – Zeitschrift, Bd. 38:168–170Google Scholar
  339. 339.
    Stribeck R (1894) Berechnung der Zahnräder. VDI – Zeitschrift, Bd. 38:1182–1187Google Scholar
  340. 340.
    Thomas J (1997) Flankentragfähigkeit and Laufverhalten von hart-feinbearbeiteten Kegelrädern. Doctoral thesis, Technical University of MunichGoogle Scholar
  341. 341.
    Timoshenko SP (1953) History of strength of materials. McGraw-Hill Book Company Inc., New YorkGoogle Scholar
  342. 342.
    Tobie T, Höhn B-R, Stahl K (2013) Tooth flank breakage—influences on subsurface initiated fatigue failures of case-hardened gears. In: Proceedings of the ASME 2013 power transmission and gearing conference, Portland, OR, 4–7 Aug 2014Google Scholar
  343. 343.
    Tredgold T (1820) Elementary principles of carpentry. Printed for J. Taylor, LondonGoogle Scholar
  344. 344.
    Tredgold T (1822) A practical essays on the strength of cast Iron, intended for the Assistance of Engineers, …, with an extensive table of the properties of materials …. Printed for J. Taylor, LondonGoogle Scholar
  345. 345.
    Truesdell CA (1977) A first course in rational continuum mechanics. Academic Press, New YorkGoogle Scholar
  346. 346.
    Truesdell CA (1992) Cauchy and the modern mechanics of continua. Revue d’Histoire des Sciences 45(1):5–24MathSciNetzbMATHCrossRefGoogle Scholar
  347. 347.
    Tuplin WA (1944) Machinery’s gear design handbook. Machinery Publishing Company Ltd., LondonGoogle Scholar
  348. 348.
    Tuplin WA (1950) Gear tooth stresses at high speed. Proc Inst Mech Eng 163(59):162–175CrossRefGoogle Scholar
  349. 349.
    Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23(9):805–823zbMATHCrossRefGoogle Scholar
  350. 350.
    Veldkamp GR (1967) Canonical systems and instantaneous invariants in spatial kinematics. ASME J Mech 2:329–388Google Scholar
  351. 351.
    van Musschenbroek P (1729) Physicae Experimentales et Geometricae de Magnete, tuborum capillarium vitreorumque speculorum attraction, magnitudine terrae, coherentia corporum firmorum dissertations. S. Luchtmanz, Lugduni Batavorum, LeydenGoogle Scholar
  352. 352.
    von Bach C (1889) Elasticität und Festgkeit. Die für die Technik wichtigsten Sätze und deren erfahrungsmässige Grundlage. Springer, BerlinGoogle Scholar
  353. 353.
    von Bach C (1899) Die Maschinen-Element: ihre Berechnung und Konstruktion mit Rücksicht auf die neueren Versuche. Arnold Bergsträsser A. Kröner, StuttgartGoogle Scholar
  354. 354.
    von Mises R (1913) Mechanik der festen Körper im Plastisch-detormablem Zustand. Göttinger Nachrichten, Akad. Wiss, Math-Physik., Kl., 582–592Google Scholar
  355. 355.
    von Tetmajer L (1886) Methoden und Resultate der Prüfung von Eisen und Stahl und anderer Metalle. Meyer & Zeller, ZürichGoogle Scholar
  356. 356.
    Vullo V (2014) Circular cylinders and pressure vessels: stress analysis and design. Springer International Publishing Switzerland, ChamGoogle Scholar
  357. 357.
    Vullo V, Vivio F (2013) Rotors: stress analysis and design. Springer, MilanzbMATHCrossRefGoogle Scholar
  358. 358.
    Wang S, Cusano C, Conry TF (1991) Thermal analysis of elastohydrodynamic lubrication of line contacts using the ree-eyring fluid model. Trans ASME J Tribol 113:232–244CrossRefGoogle Scholar
  359. 359.
    Warwick A (2014) Who invented the automatic gearbox. North West Transmissios Ltd., (ed), Retrieved 11 OctGoogle Scholar
  360. 360.
    Watt J (1781) Sun and planet gear. Watt’s patent, 25 Oct 1781Google Scholar
  361. 361.
    Whiteside DT (1967–1982) The mathematical papers of Isaac Newton, 8 vols. Cambridge University Press, CambridgeGoogle Scholar
  362. 362.
    Wilcox L, Coleman E (1973) Application of finite elements to the analysis of gear tooth stresses. J Eng Ind 95(4):1139–1148CrossRefGoogle Scholar
  363. 363.
    Wildhaber E (1926) Helical gearing. United States Patent Office, Patent No. 1.601.750Google Scholar
  364. 364.
    Willis R (1841) Principles of mechanism. John W. Parker, LondonGoogle Scholar
  365. 365.
    Wilson EL, Farboomand I, Bathe KJ (1973) Nonlinear dynamic analysis of complex structures. Earthq Eng Struct Dyn 1:241–252CrossRefGoogle Scholar
  366. 366.
    Winter H (1961) Gear tooth strength of spur gears, Part 1. Power Transm 30:404, 516Google Scholar
  367. 367.
    Winter H (1962) Gear tooth strength of spur gears, Part 2. Power Transm 31:66, 124Google Scholar
  368. 368.
    Winter H, Hösel Th (1969) Tragfähigkeitsberechnung von Stirn und Kegelrädern nach DIN 3990. Zeitschrift VDI 111:209Google Scholar
  369. 369.
    Witzig J (2012) Flankenbruch Eine Grenze der Zahnradtragfähigkeit in der Werkstofftiefe. Ph.D. thesis, Technical University of MunichGoogle Scholar
  370. 370.
    Woodbury RS (1958) History of the gear-cutting machine. The Technology Press, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  371. 371.
    Wöhler A (1870) Über die Festigkeitsversuche mit Eisen und Stahl. Zeitschrift für Bauwesen 20:73–106Google Scholar
  372. 372.
    Young T (1807) A course of lectures on natural philosophy and the mechanical arts, vols I, II. Joseph Johnson, LondonGoogle Scholar
  373. 373.
    Yu M (2002) Advances in strength theories for materials under complex stress state in the 20th century. ASME Appl Mech Rev 55(3):169–218CrossRefGoogle Scholar
  374. 374.
    Yu Z-Y, Zhou S-P, Liu Q, Liu Y (2017) Multiaxial fatigue damage parameter and life prediction without any additional material constants. Materials, MDPI Basel Switzerland 10(8)Google Scholar
  375. 375.
    Zammattio C (1974) The mechanics of water and stone. In: Reti L (ed) The unknown Leonardo. McGraw-Hill Co., New YorkGoogle Scholar
  376. 376.
    Zanzi C, Pedrero JI (2005) Application of modified geometry of face gear drive. Comput Methods Appl Mech Eng 194(27–29):3047–3066zbMATHCrossRefGoogle Scholar
  377. 377.
    Zhou Y, Zhu C, Liu H (2019) A micropitting study considering rough sliding and mild wear. Coatings 9:639–653CrossRefGoogle Scholar
  378. 378.
    Zienkiewicz OC (1969) The finite element method in engineering science. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Rome “Tor Vergata”RomeItaly

Personalised recommendations