Studies on Machining of Hard Materials

  • Manjunath Patel G. C.Email author
  • Ganesh R. Chate
  • Mahesh B. Parappagoudar
  • Kapil Gupta
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Over the years, machining industries are continuously striving to manufacture the parts at reduced cost and improved quality. This can be achieved by selecting appropriate set of tool–work materials and effective modelling and optimization of the process. Optimized grades of high-speed steel (HSS) are used to be treated as ultimate tool material till the 1930s [1]. However, American metalworking industry had shown three-time improvement in productivity with the use of same machines and manpower during the period 1939–1945.


  1. 1.
    P. Ettmayer, H. Kolaska, H.M. Ortner, History of hardmetals. Compr. Hard Mater. 1, 3–27 (2014). Scholar
  2. 2.
    I. Mukherjee, P.K. Ray, A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1–2), 15–34 (2006)CrossRefGoogle Scholar
  3. 3.
    Y. Huang, S.Y. Liang, Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning. Int. J. Mach. Tools Manuf. 43(3), 307–315 (2003)CrossRefGoogle Scholar
  4. 4.
    Y. Huang, S.Y. Liang, Modeling of cutting forces under hard turning conditions considering tool wear effect. J. Manuf. Sci. Eng. 127(2), 262–270 (2005)CrossRefGoogle Scholar
  5. 5.
    P.J. Arrazola, T. Ozel, Numerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method. Int. J. Mach. Mach. Mater. 4(1), 14–25 (2008)Google Scholar
  6. 6.
    C. Scheffer, H. Kratz, P.S. Heyns, F. Klocke, Development of a tool wear-monitoring system for hard turning. Int. J. Mach. Tools Manuf 43(10), 973–985 (2003)CrossRefGoogle Scholar
  7. 7.
    J.S. Dureja, V.K. Gupta, V.S. Sharma, M. Dogra, M.S. Bhatti, A review of empirical modeling techniques to optimize machining parameters for hard turning applications. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(3), 389–404 (2016)CrossRefGoogle Scholar
  8. 8.
    F.J. Pontes, A.P. de Paiva, P.P. Balestrassi, J.R. Ferreira, M.B. da Silva, Optimization of radial basis function neural network employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays. Expert Syst. Appl. 39(9), 7776–7787 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Agrawal, S. Goel, W.B. Rashid, M. Price, Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC). Appl. Soft Comput. 30, 279–286 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Sayuti, A.A. Sarhan, F. Salem, Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J. Clean. Prod. 67, 265–276 (2014)CrossRefGoogle Scholar
  11. 11.
    K. Bouacha, M.A. Yallese, S. Khamel, S. Belhadi, Analysis and optimization of hard turning operation using cubic boron nitride tool. Int. J. Refract Metal Hard Mater. 45, 160–178 (2014)CrossRefGoogle Scholar
  12. 12.
    F. Klocke, E. Brinksmeier, K. Weinert, Capability profile of hard cutting and grinding processes. CIRP Ann. Manuf. Technol. 54(2), 22–45 (2005)CrossRefGoogle Scholar
  13. 13.
    B.P. Erdel, High-Speed Machining (Society of Manufacturing Engineers, 2003)Google Scholar
  14. 14.
    R. Suresh, S. Basavarajappa, V.N. Gaitonde, G.L. Samuel, J.P. Davim, State-of-the-art research in machinability of hardened steels. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 191–209 (2013)CrossRefGoogle Scholar
  15. 15.
    V.P. Astakhov, Machining of hard materials–definitions and industrial applications, Machining of Hard Materials (Springer, London, 2011), pp. 1–32Google Scholar
  16. 16.
    C. Daniel, One-at-a-time plans. J. Am. Stat. Assoc. 68(342), 353–360 (1973)CrossRefGoogle Scholar
  17. 17.
    M. Friedman, L.J. Savage, Planning experiments seeking maxima. Tech. Stat. Anal. (1947), pp. 365–372Google Scholar
  18. 18.
    Z. Li, B. Chen, H. Wu, X. Ye, B. Zhang, A design of experiment aided stochastic parameterization method for modeling aquifer NAPL contamination. Environ. Model Softw. 101, 183–193 (2018)CrossRefGoogle Scholar
  19. 19.
    G.E. Box, P.Y. Liu, Statistics as a catalyst to learning by scientific method part I—an example. J. Qual. Technol. 31(1), 1–15 (1999)CrossRefGoogle Scholar
  20. 20.
    V. Czitrom, One-factor-at-a-time versus designed experiments. Am. Stat. 53(2), 126–131 (1999)Google Scholar
  21. 21.
    C.J. Wu, M.S. Hamada, Experiments: Planning, Analysis, and Optimization, vol. 552 (Wiley & Sons, 2011)Google Scholar
  22. 22.
    D.D. Frey, H. Wang, Adaptive one-factor-at-a-time experimentation and expected value of improvement. Technometrics 48(3), 418–431 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm. Aust. J. Mech. Eng. 14(3), 182–198 (2016)CrossRefGoogle Scholar
  24. 24.
    G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, Modelling in squeeze casting process-present state and future perspectives. Adv. Autom. Eng. 4(1), 1–9 (2015)Google Scholar
  25. 25.
    R.T. Coelho, E.G. Ng, M.A. Elbestawi, Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions. Int. J. Mach. Tools Manuf. 47(2), 263–272 (2007)CrossRefGoogle Scholar
  26. 26.
    J.L. Li, L.L. Jing, M. Chen, An FEM study on residual stresses induced by high-speed end-milling of hardened steel SKD11. J. Mater. Process. Technol. 209(9), 4515–4520 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Lorentzon, N. Järvstråt, Modelling tool wear in cemented-carbide machining alloy 718. Int. J. Mach. Tools Manuf. 48(10), 1072–1080 (2008)CrossRefGoogle Scholar
  28. 28.
    H.J. Hu, W.J. Huang, Studies on wears of ultrafine-grained ceramic tool and common ceramic tool during hard turning using Archard wear model. Int. J. Adv. Manuf. Technol. 69(1–4), 31–39 (2013)CrossRefGoogle Scholar
  29. 29.
    D.M. Kim, V. Bajpai, B.H. Kim, H.W. Park, Finite element modeling of hard turning process via a micro-textured tool. Int. J. Adv. Manuf. Technol. 78(9–12), 1393–1405 (2015)CrossRefGoogle Scholar
  30. 30.
    C.S. Kumar, S.K. Patel, Application of surface modification techniques during hard turning: present work and future prospects. Int. J. Refract Metal Hard Mater. 76, 112–127 (2018)CrossRefGoogle Scholar
  31. 31.
    C.S. Kumar, S.K. Patel, Effect of chip sliding velocity and temperature on the wear behaviour of PVD AlCrN and AlTiN coated mixed alumina cutting tools during turning of hardened steel. Surf. Coat. Technol. 334, 509–525 (2018)CrossRefGoogle Scholar
  32. 32.
    L. Ma, C. Li, J. Chen, W. Li, Y. Tan, C. Wang, Y. Zhou, Prediction model and simulation of cutting force in turning hard-brittle materials. Int. J. Adv. Manuf. Technol. 91(1–4), 165–174 (2017)CrossRefGoogle Scholar
  33. 33.
    C. Shet, X. Deng, Residual stresses and strains in orthogonal metal cutting. Int. J. Mach. Tools Manuf. 43(6), 573–587 (2003)CrossRefGoogle Scholar
  34. 34.
    K. Li, X.L. Gao, J.W. Sutherland, Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process. J. Mater. Process. Technol. 127(3), 309–324 (2002)CrossRefGoogle Scholar
  35. 35.
    F. Akbar, P.T. Mativenga, M.A. Sheikh, An experimental and coupled thermo-mechanical finite element study of heat partition effects in machining. Int. J. Adv. Manuf. Technol. 46(5–8), 491–507 (2010)CrossRefGoogle Scholar
  36. 36.
    A. Qasim, S. Nisar, A. Shah, M.S. Khalid, M.A. Sheikh, Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simul. Model. Pract. Theory 59, 36–51 (2015)CrossRefGoogle Scholar
  37. 37.
    M.E. Korkmaz, M. Günay, Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel. Arab. J. Sci. Eng. (2018), pp. 1–8Google Scholar
  38. 38.
    S. Benlahmidi, H. Aouici, F. Boutaghane, A. Khellaf, B. Fnides, M.A. Yallese, Design optimization of cutting parameters when turning hardened AISI H11 steel (50 HRC) with CBN7020 tools. Int. J. Adv. Manuf. Technol. 89(1–4), 803–820 (2017)CrossRefGoogle Scholar
  39. 39.
    P. Kumar, S. Chauhan, C. Pruncu, M. Gupta, D. Pimenov, M. Mia, H. Gill, Influence of different grades of CBN inserts on cutting force and surface roughness of AISI H13 die tool steel during hard turning operation. Materials 12(1), 177 (2019)CrossRefGoogle Scholar
  40. 40.
    G.E. Box, N.R. Draper, Empirical Model-Building and Response Surfaces (Wiley & Sons, 1987)Google Scholar
  41. 41.
    E. Budak, Y. Altintas, E.J.A. Armarego, Prediction of milling force coefficients from orthogonal cutting data. J. Manuf. Sci. Eng. 118(2), 216–224 (1996)CrossRefGoogle Scholar
  42. 42.
    A.S. More, W. Jiang, W.D. Brown, A.P. Malshe, Tool wear and machining performance of cBN–TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel. J. Mater. Process. Technol. 180(1–3), 253–262 (2006)CrossRefGoogle Scholar
  43. 43.
    J.A. Arsecularatne, L.C. Zhang, C. Montross, P. Mathew, On machining of hardened AISI D2 steel with PCBN tools. J. Mater. Process. Technol. 171(2), 244–252 (2006)CrossRefGoogle Scholar
  44. 44.
    Y.K. Chou, C.J. Evans, M.M. Barash, Experimental investigation on CBN turning of hardened AISI 52100 steel. J. Mater. Process. Technol. 124(3), 274–283 (2002)CrossRefGoogle Scholar
  45. 45.
    T.G. Dawson, T.R. Kurfess, Machining hardened steel with ceramic-coated and uncoated CBN cutting tools. Soc. Manuf. Eng. 156, 1–7 (2002)Google Scholar
  46. 46.
    V.G. Navas, I. Ferreres, J.A. Marañón, C. Garcia-Rosales, J.G. Sevillano, Electro-discharge machining (EDM) versus hard turning and grinding—Comparison of residual stresses and surface integrity generated in AISI O1 tool steel. J. Mater. Process. Technol. 195(1–3), 186–194 (2008)CrossRefGoogle Scholar
  47. 47.
    M.A. Kamely, M.Y. Noordin, V.C. Venkatesh, The effect of multiple pass cutting on surface integrity when hard turning of AISI D2 cold work tool steel. Int. J. Precis. Technol. 1(1), 97–105 (2007)CrossRefGoogle Scholar
  48. 48.
    H.A. Kishawy, M.A. Elbestawi, Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 215(6), 755–767 (2001)CrossRefGoogle Scholar
  49. 49.
    M. Liu, J.I. Takagi, A. Tsukuda, Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J. Mater. Process. Technol. 150(3), 234–241 (2004)CrossRefGoogle Scholar
  50. 50.
    S.K. Khrais, Y.J. Lin, Wear mechanisms and tool performance of TiAlN PVD coated inserts during machining of AISI 4140 steel. Wear 262(1–2), 64–69 (2007)CrossRefGoogle Scholar
  51. 51.
    C.K. Toh, Tool life and tool wear during high-speed rough milling using alternative cutter path strategies. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 217(9), 1295–1304 (2003)CrossRefGoogle Scholar
  52. 52.
    T. Ozel, T.K. Hsu, E. Zeren, Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int. J. Adv. Manuf. Technol. 25(3–4), 262–269 (2005)CrossRefGoogle Scholar
  53. 53.
    J.M. Zhou, H. Walter, M. Andersson, J.E. Stahl, Effect of chamfer angle on wear of PCBN cutting tool. Int. J. Mach. Tools Manuf. 43(3), 301–305 (2003)CrossRefGoogle Scholar
  54. 54.
    R. Meyer, J. Köhler, B. Denkena, Influence of the tool corner radius on the tool wear and process forces during hard turning. Int. J. Adv. Manuf. Technol. 58(9–12), 933–940 (2012)CrossRefGoogle Scholar
  55. 55.
    J. Bhaskaran, M. Murugan, N. Balashanmugam, M. Chellamalai, Monitoring of hard turning using acoustic emission signal. J. Mech. Sci. Technol. 26(2), 609–615 (2012)CrossRefGoogle Scholar
  56. 56.
    K. Aslantas, I. Ucun, A. Cicek, Tool life and wear mechanism of coated and uncoated Al2O3/TiCN mixed ceramic tools in turning hardened alloy steel. Wear 274, 442–451 (2012)CrossRefGoogle Scholar
  57. 57.
    W.B. Rashid, S. Goel, X. Luo, J.M. Ritchie, An experimental investigation for the improvement of attainable surface roughness during hard turning process. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227(2), 338–342 (2013)CrossRefGoogle Scholar
  58. 58.
    A.K. Sahoo, B. Sahoo, Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts. Measurement 45(8), 2153–2165 (2012)CrossRefGoogle Scholar
  59. 59.
    R. Ferreira, J. Řehoř, C.H. Lauro, D. Carou, J.P. Davim, Analysis of the hard turning of AISI H13 steel with ceramic tools based on tool geometry: surface roughness, tool wear and their relation. J. Braz. Soc. Mech. Sci. Eng. 38(8), 2413–2420 (2016)CrossRefGoogle Scholar
  60. 60.
    G. Zheng, R. Xu, X. Cheng, G. Zhao, L. Li, J. Zhao, Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M. Measurement 125, 99–108 (2018)CrossRefGoogle Scholar
  61. 61.
    I. Lazoglu, K. Buyukhatipoglu, H. Kratz, F. Klocke, Forces and temperatures in hard turning. Mach. Sci. Technol. 10(2), 157–179 (2006)CrossRefGoogle Scholar
  62. 62.
    A. Srithar, K. Palanikumar, B. Durgaprasad, Experimental investigation and surface roughness analysis on hard turning of AISI D2 steel using coated carbide insert. Procedia Eng. 97, 72–77 (2014)CrossRefGoogle Scholar
  63. 63.
    F. Puh, T. Šegota, Z. Jurković, Optimization of hard turning process parameters with PCBN tool based on the Taguchi method. Tehnički vjesnik 19(2), 415–419 (2012)Google Scholar
  64. 64.
    R. Suresh, S. Basavarajappa, G.L. Samuel, Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement 45(7), 1872–1884 (2012)CrossRefGoogle Scholar
  65. 65.
    H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement 45(3), 344–353 (2012)CrossRefGoogle Scholar
  66. 66.
    H. Aouici, M.A. Yallese, A. Belbah, M.F. Ameur, M. Elbah, Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool. Sadhana 38(3), 429–445 (2013)CrossRefGoogle Scholar
  67. 67.
    Z. Hessainia, A. Belbah, M.A. Yallese, T. Mabrouki, J.F. Rigal, On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46(5), 1671–1681 (2013)CrossRefGoogle Scholar
  68. 68.
    M. Elbah, M.A. Yallese, H. Aouici, T. Mabrouki, J.F. Rigal, Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement 46(9), 3041–3056 (2013)CrossRefGoogle Scholar
  69. 69.
    S. Saini, I.S. Ahuja, V.S. Sharma, Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. Int. J. Adv. Manuf. Technol. 65(5–8), 667–678 (2013)CrossRefGoogle Scholar
  70. 70.
    E. Yucel, M. Gunay, Modelling and optimization of the cutting conditions in hard turning of high-alloy white cast iron (Ni-Hard). Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 227(10), 2280–2290 (2013)CrossRefGoogle Scholar
  71. 71.
    H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, B. Fnides, Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. Int. J. Adv. Manuf. Technol. 73(9–12), 1775–1788 (2014)CrossRefGoogle Scholar
  72. 72.
    M.Y. Noordin, D. Kurniawan, Y.C. Tang, K. Muniswaran, Feasibility of mild hard turning of stainless steel using coated carbide tool. Int. J. Adv. Manuf. Technol. 60(9–12), 853–863 (2012)CrossRefGoogle Scholar
  73. 73.
    J.S. Dureja, R. Singh, M.S. Bhatti, Optimizing flank wear and surface roughness during hard turning of AISI D3 steel by Taguchi and RSM methods. Prod. Manuf. Res. 2(1), 767–783 (2014)Google Scholar
  74. 74.
    I. Meddour, M.A. Yallese, R. Khattabi, M. Elbah, L. Boulanouar, Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. Int. J. Adv. Manuf. Technol. 77(5–8), 1387–1399 (2015)CrossRefGoogle Scholar
  75. 75.
    S.R. Das, D. Dhupal, A. Kumar, Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts. J. Mech. Sci. Technol. 29(10), 4329–4340 (2015)CrossRefGoogle Scholar
  76. 76.
    F. Jafarian, H. Amirabadi, J. Sadri, Experimental measurement and optimization of tensile residual stress in turning process of Inconel718 superalloy. Measurement 63, 1–10 (2015)CrossRefGoogle Scholar
  77. 77.
    H. Aouici, B. Fnides, M. Elbah, S. Benlahmidi, H. Bensouilah, M. Yallese, Surface roughness evaluation of various cutting materials in hard turning of AISI H11. Int. J. Ind. Eng. Comput. 7(2), 339–352 (2016)Google Scholar
  78. 78.
    P. Revel, N. Jouini, G. Thoquenne, F. Lefebvre, High precision hard turning of AISI 52100 bearing steel. Prec. Eng. 43, 24–33 (2016)CrossRefGoogle Scholar
  79. 79.
    M. Mia, N.R. Dhar, Response surface and neural network based predictive models of cutting temperature in hard turning. J. Adv. Res. 7(6), 1035–1044 (2016)CrossRefGoogle Scholar
  80. 80.
    H. Zahia, Y. Athmane, B. Lakhdar, M. Tarek, On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. Int. J. Ind. Eng. Comput. 6(2), 267–284 (2015)Google Scholar
  81. 81.
    L. Tang, Z. Cheng, J. Huang, C. Gao, W. Chang, Empirical models for cutting forces in finish dry hard turning of hardened tool steel at different hardness levels. Int. J. Adv. Manuf. Technol. 76(1–4), 691–703 (2015)CrossRefGoogle Scholar
  82. 82.
    M. Mia, N.R. Dhar, Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. Int. J. Adv. Manuf. Technol. 88(1–4), 739–753 (2017)CrossRefGoogle Scholar
  83. 83.
    A. Khellaf, H. Aouici, S. Smaiah, S. Boutabba, M.A. Yallese, M. Elbah, Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography. Int. J. Adv. Manuf. Technol. 89(1–4), 333–354 (2017)CrossRefGoogle Scholar
  84. 84.
    A. Panda, S.R. Das, D. Dhupal, Surface roughness analysis for economical feasibility study of coated ceramic tool in hard turning operation. Proc. Integr. Optimization Sustain. 1(4), 237–249 (2017)CrossRefGoogle Scholar
  85. 85.
    O. Zerti, M.A. Yallese, R. Khettabi, K. Chaoui, T. Mabrouki, Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method. Int. J. Adv. Manuf. Technol. 89(5–8), 1915–1934 (2017)CrossRefGoogle Scholar
  86. 86.
    M. Mia, N.R. Dhar, Modeling of surface roughness using RSM, FL and SA in dry hard turning. Arab. J. Sci. Eng. 43(3), 1125–1136 (2018)CrossRefGoogle Scholar
  87. 87.
    A. Zerti, M.A. Yallese, O. Zerti, M. Nouioua, R. Khettabi, Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. (2019). Scholar
  88. 88.
    M. Kaladhar, Evaluation of hard coating materials performance on machinability issues and material removal rate during turning operations. Measurement 135, 493–502 (2019)CrossRefGoogle Scholar
  89. 89.
    J. Jena, A. Panda, A.K. Behera, P.C. Jena, S.R. Das, D. Dhupal, Modeling and optimization of surface roughness in hard turning of AISI 4340 steel with coated ceramic tool, in Innovation in Materials Science and Engineering (Springer, Singapore, 2019), pp. 151–160Google Scholar
  90. 90.
    A. Alok, M. Das, Multi-objective optimization of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN2-coated carbide insert. Measurement 133, 288–302 (2019)CrossRefGoogle Scholar
  91. 91.
    M.S. Phadke, Quality Enginuring using Robust Design (Prentice Hall, New Jersey, 1989)Google Scholar
  92. 92.
    G. Taguchi, Y. Wu, Introduction to off-line quality control, Central Japan quality control association. Avail. Am. Suppl. Inst., vol. 32100 (1980)Google Scholar
  93. 93.
    K.L. Tsui, An overview of Taguchi method and newly developed statistical methods for robust design. Iie Transactions 24(5), 44–57 (1992)CrossRefGoogle Scholar
  94. 94.
    P.J. Ross, P.J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter And Tolerance Design (No. TS156 R12) (McGraw-Hill, New York, 1988)Google Scholar
  95. 95.
    R. Unal, E.B. Dean, Taguchi Approach To Design Optimization for Quality and Cost: An OverviewGoogle Scholar
  96. 96.
    W.M. Carlyle, D.C. Montgomery, G.C. Runger, Optimization problems and methods in quality control and improvement. J. Qual. Technol. 32(1), 1–17 (2000)CrossRefGoogle Scholar
  97. 97.
    G.E. Box, K.B. Wilson, On the experimental attainment of optimum conditions. J. Royal Stat. Soc. Ser. B (Methodol.) 13(1), 1–38 (1951)MathSciNetzbMATHGoogle Scholar
  98. 98.
    D.C. Montgomery, Design and Analysis of Experiments, vol. 52 (Wiley & Sons, 2001), pp. 218–286Google Scholar
  99. 99.
    G.C.M. Patel, P. Krishna, M.B. Parappagoudar, Squeeze casting process modeling by a conventional statistical regression analysis approach. Appl. Math. Modell. 40(15–16), 6869–6888 (2016)zbMATHCrossRefGoogle Scholar
  100. 100.
    L.A. Trinca, S.G. Gilmour, Difference variance dispersion graphs for comparing response surface designs with applications in food technology. J. Royal Stat. Soc. Ser. C (Appl. Stat.) 48(4), 441–455 (1999)zbMATHCrossRefGoogle Scholar
  101. 101.
    R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)CrossRefGoogle Scholar
  102. 102.
    R.V. Rao, Single-and multi-objective optimization of casting processes using Jaya algorithm and its variants, in Jaya: An Advanced Optimization Algorithm and its Engineering Applications (Springer, Cham, 2019), pp. 273–289Google Scholar
  103. 103.
    G.R. Chate, G.C.M. Patel, A.S. Deshpande, M.B. Parappagoudar, Modeling and optimization of furan molding sand system using design of experiments and particle swarm optimization. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 232(5), 579–598 (2018)CrossRefGoogle Scholar
  104. 104.
    G.R. Chate, G.C.M. Patel, S.B. Bhushan, M.B. Parappagoudar, A.S. Deshpande, Comprehensive modelling, analysis and optimization of furan resin-based moulding sand system with sawdust as an additive. J. Braz. Soc. Mech. Sci. Eng. 41(4), 183 (2019)CrossRefGoogle Scholar
  105. 105.
    G.C.M. Patel, P. Krishna, P.R. Vundavilli, M.B. Parappagoudar, Multi-objective optimization of squeeze casting process using genetic algorithm and particle swarm optimization. Arch. Foundry Eng. 16(3), 172–186 (2016)CrossRefGoogle Scholar
  106. 106.
    G.C.M. Patel, P. Krishna, M.B. Parappagoudar, P.R. Vundavilli, Multi-objective optimization of squeeze casting process using evolutionary algorithms. Int. J. Swarm Intell. Res. (IJSIR) 7(1), 55–74 (2016)CrossRefGoogle Scholar
  107. 107.
    K. Bouacha, M.A. Yallese, T. Mabrouki, J.F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int. J. Refract. Metals Hard Mater. 28(3), 349–361 (2010)CrossRefGoogle Scholar
  108. 108.
    G. Bartarya, S.K. Choudhury, Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel. Procedia CIRP 1, 651–656 (2012)CrossRefGoogle Scholar
  109. 109.
    V.S. Sharma, S. Dhiman, R. Sehgal, S.K. Sharma, Estimation of cutting forces and surface roughness for hard turning using neural networks. J. Intell. Manuf. 19(4), 473–483 (2008)CrossRefGoogle Scholar
  110. 110.
    P. Dahlman, F. Gunnberg, M. Jacobson, The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J. Mater. Process. Technol. 147(2), 181–184 (2004)CrossRefGoogle Scholar
  111. 111.
    V.N. Gaitonde, S.R. Karnik, L. Figueira, J.P. Davim, Analysis of machinability during hard turning of cold work tool steel (type: AISI D2). Mater. Manuf. Process. 24(12), 1373–1382 (2009)CrossRefGoogle Scholar
  112. 112.
    J. Hua, R. Shivpuri, X. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, T.R. Watkins, Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Mater. Sci. Eng. A 394(1–2), 238–248 (2005)CrossRefGoogle Scholar
  113. 113.
    A. Madariaga, J.A. Esnaola, E. Fernandez, P.J. Arrazola, A. Garay, F. Morel, Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int. J. Adv. Manuf. Technol. 71(9–12), 1587–1598 (2014)CrossRefGoogle Scholar
  114. 114.
    M. Dogra, V.S. Sharma, J. Dureja, Effect of tool geometry variation on finish turning-a review. J. Eng. Sci. Technol. Rev. 4(1), 10–13 (2011)CrossRefGoogle Scholar
  115. 115.
    W. König, R. Komanduri, H.K. Toenshoff, G. Ackershott, Machining of hard materials. CIRP Annals 33(2), 417–427 (1984)CrossRefGoogle Scholar
  116. 116.
    T. Ozel, Y. Karpat, A. Srivastava, Hard turning with variable micro-geometry PcBN tools. CIRP Ann. 57(1), 73–76 (2008)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manjunath Patel G. C.
    • 1
    Email author
  • Ganesh R. Chate
    • 2
  • Mahesh B. Parappagoudar
    • 3
  • Kapil Gupta
    • 4
  1. 1.Department of Mechanical EngineeringPES Institute of Technology and ManagementShivamoggaIndia
  2. 2.Department of Mechanical EngineeringKLS Gogte Institute of TechnologyBelgaumIndia
  3. 3.Department of Mechanical EngineeringPadre Conceicao College of EngineeringVernaIndia
  4. 4.Department of Mechanical and Industrial Engineering TechnologyUniversity of JohannesburgDoornfontein, JohannesburgSouth Africa

Personalised recommendations