Advertisement

Natural, Forced, and Mixed Convection Heat Transfer in External Flows Through Porous Media

  • Aroon Shenoy
Chapter
  • 15 Downloads

Abstract

Chapter 6 turns to external flows through porous media and derives expressions for natural, forced and mixed convection heat transfer past a vertical plate embedded in a porous medium. The final form of the equation for mixed convection is like those of the correlating equations for combined laminar forced and free convection heat transfer for Newtonian fluids and for non- Newtonian fluids in homogeneous media. Such equations which interpolate the two extremes of forced and free convection have been shown to give reasonably accurate results for homogeneous media. In the case of convective flow through porous media, too, such correlating equations are very effective.

References

  1. Bejan, A. (1984). Convective heat transfer. New York: Wiley.zbMATHGoogle Scholar
  2. Bejan, A. (1987). In S. Kakac, R. K. Shah, & W. Aung (Eds.), Handbook of single-phase convective heat transfer, convective heat transfer in porous media. New York: Wiley.Google Scholar
  3. Bejan, A., & Poulikakos, D. (1984). The non-Darcy regime for vertical boundary layer natural convection in a porous medium. International Journal of Heat and Mass Transfer, 27(5), 717–722.zbMATHCrossRefGoogle Scholar
  4. Boger, D. V. (1977/78). A highly elastic constant viscosity fluid. Journal of Non-Newtonian Fluid Mechanics, 3, 87–91.Google Scholar
  5. Brinkman, H. C. (1947). A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Scientific Research, A1, 27–34.zbMATHGoogle Scholar
  6. Broadbent, J. M., & Mena, B. (1974). Slow flow of an elastico-viscous fluid past cylinders and spheres. Chemical Engineering Journal, 8(1), 11–19.CrossRefGoogle Scholar
  7. Cao, Y., & Cui, X. (2015). Natural convection of power-law fluids in porous media with variable thermal and mass diffusivity. International Journal of Heat and Technology, 33(2), 85–90.CrossRefGoogle Scholar
  8. Caswell, B., & Schwarz, W. H. (1962). The creeping motion of a non-newtonian fluid past a sphere. Journal of Fluid Mechanics, 13(3), 417–426.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Chamkha, A. J., & Ben-Nakhi, A. (2007). Coupled heat and mass transfer in mixed convection flow of a non-newtonian fluidover a permeable surface embedded in a non-darcian porous medium. International Journal of Heat and Technology, 25(1), 33–41.Google Scholar
  10. Chen, H.-T., & Chen, C.-K. (1988a). Free convection of non-newtonian fluids along a vertical surface embedded in a porous medium. Transactions ASME, Journal Heat Transfer, 110, 257–260.CrossRefGoogle Scholar
  11. Chen, H.-T., & Chen, C.-K. (1988b). Natural convection of a non-newtonian fluid about a horizontal cylinder and a sphere in a porous medium. International Communications in Heat and Mass Transfer, 15, 605–614.CrossRefGoogle Scholar
  12. Cheng, P. (1978). Heat transfer in geothermal systems. Advances in Heat Transfer, 14, 1–105.Google Scholar
  13. Chhabra, R. P. (1986). Encyclopedia of fluid mechanics, vol. 1, ch. 30. In N. P. Cheremisinoff (Ed.), Steady non-newtonian flow about a rigid sphere (pp. 983–1033). Houston, TX: Gulf Publishing Co.Google Scholar
  14. Chhabra, R. P., Uhlherr, P. H., & Boger, D. V. (1980). The influence of fluid elasticity on the drag coefficient for creeping flow around a sphere. Journal of Non-Newtonian Fluid Mechanics, 6(3–4), 187–199.CrossRefGoogle Scholar
  15. Choplin, L., Carreau, P., & Aitkadi, A. (1983). Highly elastic constant viscosity fluids. Polymer Engineering & Science, 23(8), 459–464.CrossRefGoogle Scholar
  16. Churchill, S. W. (1977). A comprehensive correlating equation for laminar, assisting, forced and free convection. AICHE Journal, 23(1), 10–16.MathSciNetCrossRefGoogle Scholar
  17. Combarnous, M. A., & Bories, S. A. (1975). Hydrothermal convection in saturated porous media. Advances Hydroscience, 10, 231–307.CrossRefGoogle Scholar
  18. Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48(2), 89–94.Google Scholar
  19. Fand, R. M., Steinberger, T. E., & Cheng, P. (1986). Combined natural and forced convection heat transfer from a horizontal cylinder embedded in a porous medium. International Journal of Heat and Mass Transfer, 29(1), 119–133.CrossRefGoogle Scholar
  20. Forchheimer, P. (1901). Wasserbewegung durch boden. Zeitschrift des Vereins Deutscher Ingenieure, 45, 1782–1788.Google Scholar
  21. Giesekus, H. (1963). Die simultane translations- und rotationsbewegung einer kugel in einer elastikoviskosen flussigkeit. Rheologica Acta, 3, 59–71.zbMATHCrossRefGoogle Scholar
  22. Hellums, J. D., & Churchill, S. W. (1964). Simplification of the mathematical description of boundary and initial value problems. AICHE Journal, 10(1), 110–114.CrossRefGoogle Scholar
  23. Ingham, D. B. (1986). The non-darcy free convection boundary layer on axisymmetric and two-dimensional bodies of arbitrary shape. International Journal of Heat and Mass Transfer, 29, 1759–1763.CrossRefGoogle Scholar
  24. Kafoussias, N. G. (1990). Principles of flow through porous media with heat transfer. In Encyclopedia of fluid mechanics, vol. 10, ch. 20 (pp. 663–686). London: Gulf Publishing Co.Google Scholar
  25. Lauriat, G., & Prasad, V. (1987). Natural convection in a vertical porous cavity: A numerical study for brinkman-extended darcy formulation. Transactions ASME Journal of Heat Transfer, 109(3), 688–696.CrossRefGoogle Scholar
  26. Leslie, F. M., & Tanner, R. I. (1961). The slow flow of a visco-elastic liquid past a sphere. The Quarterly Journal of Mechanics and Applied Mathematics, 14(1), 36–48.MathSciNetzbMATHCrossRefGoogle Scholar
  27. Mena, B., & Caswell, B. (1974). Slow flow of an elastic-viscous fluid past an immersed body. Chemical Engineering Journal, 8(2), 125–134.CrossRefGoogle Scholar
  28. Metzner, A. B., White, J. L., & Denn, M. M. (1966). Constitutive equations for viscoelastic fluids for short deformation periods and for rapidly changing flows: Significance of the Deborah number. AICHE Journal, 12(5), 863–866.CrossRefGoogle Scholar
  29. Muskat, M. (1946). The flow of homogeneous fluids through porous media. Ann Arbor, MI: Edwards.Google Scholar
  30. Nakayama, A., & Koyama, H. (1991). Buoyancy-induced flow of non-newtonian fluids over a non-isothermal body of arbitrary shape in a fluid-saturated porous medium. Applied Scientific Research, 48(1), 55–70.zbMATHCrossRefGoogle Scholar
  31. Nakayama, A., & Pop, I. (1991). A unified similarity transformation for free, forced and mixed convection in darcy and non-darcy porous media. International Journal of Heat and Mass Transfer, 34, 357–367.zbMATHCrossRefGoogle Scholar
  32. Nakayama, A., & Shenoy, A. V. (1992). A unified similarity transformation for darcy and non-darcy forced, free and mixed convection heat transfer in non-newtonian inelastic fluid-saturated porous media. Chemical Engineering Journal, 50(1), 33–45.CrossRefGoogle Scholar
  33. Nakayama, A., & Shenoy, A. V. (1993). Combined forced and free convection heat transfer in non-newtonian fluid saturated porous medium. Applied Scientific Research, 50(1), 83–95.zbMATHCrossRefGoogle Scholar
  34. Nield, D. A., & Joseph, D. D. (1985). Effects of quadratic drag on convection in a saturated porous medium. Physics of Fluids, 28(3), 995–997.CrossRefGoogle Scholar
  35. Pascal, H. (1990a). Non-isothermal flow of non-newtonian fluids through a porous medium. International Journal of Heat and Mass Transfer, 33(9), 1937–1944.zbMATHCrossRefGoogle Scholar
  36. Pascal, H. (1990b). Some self-similar two-phase flows of non-newtonian fluids through a porous medium. The journal Studies in Applied Mathematics, 82, 305–318.MathSciNetzbMATHCrossRefGoogle Scholar
  37. Pascal, H., & Pascal, J. P. (1989). Non-linear effects of non-newtonian fluids on natural convection in a porous medium. Physica D, 40(3), 393–402.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Plumb, O. A., & Huenefeld, J. C. (1981). Non-darcy natural convection from heated surfaces in saturated porous medium. International Journal of Heat and Mass Transfer, 24(4), 765–768.zbMATHCrossRefGoogle Scholar
  39. Poulikakos, D., & Bejan, A. (1985). The departure from darcy flow in natural convection in a vertical porous layer. Physics of Fluids, 28(12), 3477–3484.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Ruckenstein, E. (1978). Interpolating equations between two limiting cases for the heat transfer. AICHE Journal, 24(5), 940–941.CrossRefGoogle Scholar
  41. Rumer, R. R. (1969). In R. J. De Wiest (Ed.), Flow through porous media. Academic Press: New York.Google Scholar
  42. Shenoy, A. V. (1980a). A correlating equation for combined laminar forced and free convection heat transfer to power-law fluids. AICHE Journal, 26(3), 505–507.CrossRefGoogle Scholar
  43. Shenoy, A. V. (1980b). Combined laminar forced and free convection heat transfer to viscoelastic fluids. AICHE Journal, 26(4), 683–685.CrossRefGoogle Scholar
  44. Shenoy, A. V. (1986). Handbook of heat mass transfer, vol. 1, ch. 5. In N. P. Cheremisinoff (Ed.), Natural convection heat transfer to power-law fluids (pp. 183–210). Houston, TX: Gulf Publishing Co.Google Scholar
  45. Shenoy, A. V. (1988). Encyclopedia of fluid mechanics, vol. 7, ch. 10. In N. P. Cheremisinoff (Ed.), Natural convection heat transfer to viscoelastic fluids (pp. 287–304). Houston, TX: Gulf Publishing Co.Google Scholar
  46. Shenoy, A. V. (1992). Darcy natural, forced and mixed convection heat transfer from an isothermal vertical flat plate embedded in a porous medium saturated with an elastic fluid of constant viscosity. International Journal of Engineering Science, 30(4), 455–467.zbMATHCrossRefGoogle Scholar
  47. Shenoy, A. V. (1993). Darcy-forchheimer natural, forced and mixed convection heat transfer in non-newtianian power-law fluid-saturated porous media. Transport in Porous Media, 11(3), 219–241.CrossRefGoogle Scholar
  48. Shenoy, A. V. (1994). Non-newtonian fluid heat transfer in porous media. Advanced Heat Transfer, 24, 101–190.CrossRefGoogle Scholar
  49. Tien, C. L., & Vafai, K. (1990). Convective and radiative heat transfer in porous media. Advances in Applied Mechanics, 27, 225–281.zbMATHCrossRefGoogle Scholar
  50. Tong, T. W., & Subramanian, E. (1985). A boundary layer analysis for natural convection in vertical porous enclosures – use of the Brinkman-extended Darcy model. International Journal of Heat and Mass Transfer, 28(3), 563–571.zbMATHCrossRefGoogle Scholar
  51. Trevisan, O. V., & Bejan, A. (1990). Combined heat and mass transfer by natural convection in a porous medium. Advances Heat Transfer, 20, 315–352.CrossRefGoogle Scholar
  52. Vasantha, R., Pop, I., & Nath, G. (1986). Non-darcy natural convection over a slender vertical frustum of a cone in a saturated porous medium. International Journal of Heat and Mass Transfer, 29(1), 153–156.CrossRefGoogle Scholar
  53. Wang, C., & Tu, C. (1989). Boundary layer flow and heat transfer of non-newtonian fluids in porous media. International Journal of Heat and Fluid Flow, 10(2), 160–165.CrossRefGoogle Scholar
  54. Wang, C., Tu, C., & Zhang, X. (1990). Mixed convection of non-newtonian fluids from a vertical plate embedded in a porous medium. Acta Mechanica Sinica, 6(3), 214–220.zbMATHCrossRefGoogle Scholar
  55. Ward, J. C. (1964). Turbulent flow in porous media. Journal of the Hydraulics Division ASCE, 90(5), 1–12.Google Scholar
  56. White, J. L. (1964). Dynamics of viscoelastic fluids, melt fracture, and the rheology of fiber spinning. Journal of Applied Polymer Science, 8(5), 2339–2357.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aroon Shenoy
    • 1
  1. 1.Waterford HillsGermantownUSA

Personalised recommendations