Velocity Profiles and Friction Factors in Turbulent Pipe Flows

  • Aroon Shenoy


Chapter 2 focuses on velocity profiles and friction factors in turbulent pipe flows of drag reducing fluids, and expressions have been developed using similar assumptions like those for Newtonian fluids and power-law fluids. Flow through smooth straight circular pipes are analyzed, and expressions for the developing entrance lengths are derived. Since, in industrial practice, there are likely to be several situations wherein a drag reducing fluid enters an annular space from a large upstream reservoir, the velocity and pressure distributions in the fully developed and entrance region of annular ducts are also treated in this chapter. Not all pipes are smooth, and in reality, they have a certain level of surface defects marked by protrusions or indentations. Expression for fully developed velocity profiles in rough straight circular pipes is presented as well.


  1. Astarita, G. (1965). Possible interpretation of the mechanism of drag reduction in viscoelastic liquids. Industrial & Engineering Chemistry Fundamentals, 4(3), 354–356.CrossRefGoogle Scholar
  2. Astarita, G., & Nicodemo, L. (1966). Velocity distributions and Normal stresses in viscoelastic turbulent pipe flow. AICHE Journal, 12, 478–484.CrossRefGoogle Scholar
  3. Astarita, G., Greco, G. J., & Nicodemo, L. (1969). A phenomenological interpretation and correlation of drag reduction. AICHE Journal, 15, 564–567.CrossRefGoogle Scholar
  4. Azouz, I., & Shirazi, S. A. (1997). Numerical simulation of drag reducing turbulent flow in annular conduits. Transfer ASME Journal Fluids Engineering, 119(4), 838–846.CrossRefGoogle Scholar
  5. Bogue, D. C., & Metzner, A. B. (1963). Velocity profiles in turbulent pipe flow. Industrial & Engineering Chemistry Fundamentals, 2, 143–152.CrossRefGoogle Scholar
  6. Brandt, H., McDonald, A. T., & Boyle, F. W. (1969). Turbulent skin friction of dilute polymer solutions in rough pipes. In C. S. Wells (Ed.), Viscous drag reduction (pp. 159–171). New York: Plenum Press.CrossRefGoogle Scholar
  7. Clapp, R. M. (1961). Intern. developments in heat transfer (p. 652-61, D-159, D-211-5). New York: ASME.Google Scholar
  8. Darby, R., & Chang, H. D. (1984). Generalized correlation for friction loss in drag reducing polymer solutions. AICHE Journal, 30(2), 274–280.CrossRefGoogle Scholar
  9. Dodge, D. W., & Metzner, A. B. (1959). Turbulent flow of non-newtonian systems. AICHE Journal, 5(2), 189–204.CrossRefGoogle Scholar
  10. Elata, C., Lehrer, J., & Kahanovitz, A. (1966). Turbulent shear flow of polymer solutions. Israel Journal of Technology, 4(1), 87–95.Google Scholar
  11. Ernst, W. D. (1966). Investigation of turbulent shear flow of dilute aqueous CMC solutions. AICHE Journal, 12(3), 581–586.CrossRefGoogle Scholar
  12. Fabula, A. G. (1966). An experimental study of grid turbulence in dilute high-polymer solutions (PhD Thesis). Pennsylvania State University.Google Scholar
  13. Fenter, F. W. (1959). The turbulent boundary layer on uniformly rough surfaces at supersonic speeds (Report No. RE-E9R-2). Vought Research Center, Chance Vought Aircraft Inc.Google Scholar
  14. Friehe, C. A., & Schwarz, W. H. (1969). The use of pitot-static tubes and hot-film anemometers in dilute polymer solutions. In C. S. Wells (Ed.), Viscous drag reduction (pp. 281–296). New York: Plenum Press.CrossRefGoogle Scholar
  15. Hinze, J. D. (1955). Turbulence. New York: McGraw-Hill.Google Scholar
  16. James, D. F. (1967). Laminar flow of dilute polymer solutions around circular cylinders (PhD Thesis). California Institute of Technology.Google Scholar
  17. Kilbane, J. K., & Greenkorn, R. A. (1966). Correlation of friction factors for viscoelastic fluids in tubes, Soc. petrol. engrs. AIME Paper No. SPE 1679.Google Scholar
  18. Krope, A., Krope, J., & Lipus, L. C. (2005). A model for velocity profile in turbulent boundary layer with drag reducing surfactants. Applied Rheology, 15(3), 152–159.CrossRefGoogle Scholar
  19. Langhaar, H. L. (1951). Dimensional analysis and theory of models. New York: Wiley.zbMATHGoogle Scholar
  20. Meter, D. M. (1964). Tube flow of non-newtonian polymer solutions: Part II – turbulent flow. AICHE Journal, 10(6), 881–884.CrossRefGoogle Scholar
  21. Meyer, W. A. (1966). A correlation of the frictional characteristics for turbulent flow of dilute viscoelastic non-newtonian fluids in pipes. AICHE Journal, 12(3), 522–525.CrossRefGoogle Scholar
  22. Millikan, C. (1939). A critical discussion of turbulent flows in channels and circular tubes. In Proc. 5th intern. congr. appl. mech. New York: Wiley.Google Scholar
  23. Nikuradse, J. (1932). Laws of turbulent flow in smooth pipes (English translation). NASA, TT F-10, 359.Google Scholar
  24. Patterson, G. K., & Florez, G. L. (1969). Velocity profiles during drag reduction. In C. S. Wells (Ed.), Viscous drag reduction (pp. 233–250). New York: Plenum Press.CrossRefGoogle Scholar
  25. Pruitt, G. T., & Crawford, H. R. (1965). Investigations for the use of additives for the reduction of pressure losses. Western Company, Contract No. DA-23-072-AMC-209 (T) Final Report.Google Scholar
  26. Ramadan, A., Saasen, A., & Skalle, P. (2004). Application of the minimum transport velocity model for drag-reducing polymers. The Journal of Petroleum Science and Engineering, 44(3), 303–316.CrossRefGoogle Scholar
  27. Schlichting, H. (1960). Boundary layer theory. New York: McGraw Hill.zbMATHGoogle Scholar
  28. Sellin, R. H., Hoyt, J. W., & Scrivener, O. (1982). The effect of drag reducing additives on fluid flows and their industrial applications. Part 1: Basic aspects. Journal of Hydraulic Research, 20(1), 29–68.CrossRefGoogle Scholar
  29. Seyer, F. A., & Catania, P. J. (1972). Laminar and turbulent entry flow of polymer solutions. The Canadian Journal of Chemical Engineering, 50(1), 31–36.CrossRefGoogle Scholar
  30. Seyer, F. A., & Metzner, A. B. (1967a). Turbulent flow properties of viscoelastic fluids. The Canadian Journal of Chemical Engineering, 45(3), 121–126.CrossRefGoogle Scholar
  31. Seyer, F. A., & Metzner, A. B. (1967b). Turbulence phenomena in drag reducing systems, 60th annual AICHE meeting, New York.Google Scholar
  32. Seyer, F. A., & Metzner, A. B. (1969a). Turbulence phenomena in drag reducing systems. AICHE Journal, 15(3), 426–434.CrossRefGoogle Scholar
  33. Seyer, F. A., & Metzner, A. B. (1969b). Drag reduction in large tubes and the behavior of annular films of drag reducing fluids. The Canadian Journal of Chemical Engineering, 47(6), 525–529.CrossRefGoogle Scholar
  34. Shaver, R. G., & Merrill, E. W. (1959). Turbulent flow of pseudoplastic polymer solutions in straight cylindrical tubes. AICHE Journal, 5(2), 181–188.CrossRefGoogle Scholar
  35. Shenoy, A. V. (1988). Encyclopedia of fluid mechanics, vol. 7, ch. 16. In N. P. Cheremisinoff (Ed.), Turbulent flow velocity profiles in drag-reducing fluids (pp. 479–503). Houston, TX: Gulf Publishing Co.Google Scholar
  36. Shenoy, A. V., & Mashelkar, R. A. (1983). Engineering estimate of hydrodynamic entrance lengths in non-newtonian turbulent flow. Industrial and Engineering Chemistry Process Design and Development, 22(1), 165–168.CrossRefGoogle Scholar
  37. Shenoy, A. V., & Saini, D. R. (1982). A new velocity profile model for turbulent pipe flow of power-law fluids. The Canadian Journal of Chemical Engineering, 60(5), 694–696.CrossRefGoogle Scholar
  38. Shenoy, A. V., & Shintre, S. N. (1986). Developing and fully developed turbulent flow of drag reducing fluids in an annular duct. The Canadian Journal of Chemical Engineering, 64(2), 190–195.CrossRefGoogle Scholar
  39. Shenoy, A. V., & Talathi, M. M. (1985). Turbulent pipe flow velocity profile model for drag-reducing fluids. AICHE Journal, 31(3), 520–522.CrossRefGoogle Scholar
  40. Shintre, S. N., Mashelkar, R. A., & Ulbrecht, J. (1977). An approximate theoretical analysis and experimental verification of turbulent entrance region flow of drag reducing fluids. Rheologica Acta, 16(5), 490–496.zbMATHCrossRefGoogle Scholar
  41. Singh, R. P., Nigam, K. K., & Mishra, P. (1980). Developing and fully developed turbulent flow in an annular duct. Journal of Chemical Engineering of Japan, 13(5), 349–353.CrossRefGoogle Scholar
  42. Skelland, A. H. (1967). Non-newtonian flow and heat transfer. New York: Wiley.Google Scholar
  43. Smith, K. A., Merrill, E. W., Mickley, H., & Virk, P. (1967). Anomalous pitot tube and hot film measurements in dilute polymer solutions. Chemical Engineering Science, 22(4), 619–626.CrossRefGoogle Scholar
  44. Spangler, J. G. (1969). Studies of viscous drag reduction with polymers including turbulence measurements and roughness effects. In C. S. Wells (Ed.), Viscous drag reduction (pp. 131–157). New York: Plenum Press.CrossRefGoogle Scholar
  45. Stein, M. A., Kessler, D. P., & Greenkorn, R. A. (1980). An empirical model for velocity profiles for turbulent flow in smooth pipes. AICHE Journal, 26(2), 308–310.CrossRefGoogle Scholar
  46. Tiu, C. (1979). Turbulent flow behaviour of dilute polymer solutions in an annulus, Soc. Rheol. Golden Jubilee Meeting.Google Scholar
  47. Virk, P. S. (1966). The toms phenomenon – Turbulent pipe flow of dilute polymer solutions, Mass. Inst. of Tech., (ScD Thesis).Google Scholar
  48. Virk, P. S. (1975). Drag reduction fundamentals. AICHE Journal, 21(4), 625–656.CrossRefGoogle Scholar
  49. Virk, P. S., Merrill, E. W., Mickley, H. S., Smith, K. A., & Mollo-Christensen, E. L. (1967). The Toms phenomenon: Turbulent pipe flow of dilute polymer solutions. Journal of Fluid Mechanics, 30(2), 305–328.CrossRefGoogle Scholar
  50. Wells, C. S. (1965). Anomalous turbulent flow of non-newtonian fluids. AIAA Journal, 3(10), 1800–1805.CrossRefGoogle Scholar
  51. White, A. (1967). Turbulence and drag reduction with polymer additives. Research Bulletin No. 4, Hendon College of Technology.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aroon Shenoy
    • 1
  1. 1.Waterford HillsGermantownUSA

Personalised recommendations