Drag Reducing Agents: A Historical Perspective

  • Aroon Shenoy


Chapter 1 gives a general overview about different types of drag reducing agents, such as polymers, solid-particle suspensions, biological additives, and surfactants. It reviews past work on this subject and provides a historical perspective about this phenomenon. The chapter also discusses the proposed theories of drag reduction indicating how the extent of drag reduction lies between the Blasius line and the maximum drag reduction asymptote. An attempt has been made to illustrate the various approaches to a rational explanation of the drag reduction phenomenon by the different schools of thought. Though none of the explanations are complete in themselves, each embodies an element of truth which cannot simply be disregarded.


  1. Aggarwal, S. H., & Porter, R. S. (1980). Shear degradation of poly(vinyl acetate) in toluene solutions by high-speed stirring. Journal of Applied Polymer Science, 25(2), 173–185.CrossRefGoogle Scholar
  2. Agoston, G. A., Harte, H. W., Hottel, H. C., Klemm, W. A., Mysels, K. J., Pomeroy, H. H., et al. (1954). Flow of gasoline thickened by napalm. Industrial and Engineering Chemistry, 46(5), 1017–1019.CrossRefGoogle Scholar
  3. Ahrnborn, L., & Hagstrand, U. (1977). Toms effect in district heating tube systems. Studsvik Report SVF-50 in Swedish.Google Scholar
  4. Arranga, A. B. (1970). Friction reduction Charcteristics of fibrous and colloidal substances. Nature, 225(5231), 447–449.CrossRefGoogle Scholar
  5. Astarita, G. (1965). Possible interpretation of the mechanism of drag reduction in viscoelastic liquids. Industrial & Engineering Chemistry Fundamentals, 4(3), 354–356.CrossRefGoogle Scholar
  6. Baker, H. R., Bolster, N. N., & Little, R. C. (1970). Association colloids in nonaqueous fluids – viscosity and drag reduction characteristics. Industrial & Engineering Chemistry Product Research and Development, 9(4), 541–548.CrossRefGoogle Scholar
  7. Balakrishnan, C., & Gordon, R. J. (1971). A new viscoelastic phenomenon with significance in turbulent drag reduction. Nature Physical Sciences, 231, 177–180.CrossRefGoogle Scholar
  8. Banijamali, S. H., Merrill, E. W., Smith, K. A., & Peebles Jr., L. H. (1974). Turbulent drag reduction by Polyacrylic acid. AICHE Journal, 20(4), 824–827.CrossRefGoogle Scholar
  9. Barker, S. J. (1973). Radiated noise from turbulent boundary layers in dilute polymer solutions. Physics Fluids, 16(9), 1387–1394.CrossRefGoogle Scholar
  10. Barnes, H. A., & Walters, K. (1968). Dynamic similarity and drag reduction in flow of elastic liquids through curved pipes. Nature, 219(5149), 57–59.CrossRefGoogle Scholar
  11. Barnes, H. A., & Walters, K. (1969). On the flow of viscous and elastico-viscous liquids through straight and curved pipes. Proceedings of the Royal Society of London, 314(1516), 85.Google Scholar
  12. Beattie, D. R. (1974). Drag reduction phenomena in gas-liquid systems. In Proc. intern. conf. on drag reduction. Cambridge, UK.Google Scholar
  13. Becher, P. (1967). In M. J. Schick (Ed.), Nonionic surfactants, micelle formation in aqueous and nonaqueous solutions (p. 496). New York: Marcel Dekker.Google Scholar
  14. Belokon, V. S., & Kalashnikov, V. N. (1971). Polymer additives and turbulent friction near rough surfaces. Nature Physical Sciences, 229(2), 55–56.CrossRefGoogle Scholar
  15. Berman, N. S. (1977). Drag reduction of the highest molecular weight fractions of polyethylene oxide. Physics of Fluids, 20(5), 715–718.CrossRefGoogle Scholar
  16. Berman, N. S. (1978). Drag reduction by polymers. The Annual Review of Fluid Mechanics, 10, 47–64.CrossRefzbMATHGoogle Scholar
  17. Berman, N. S. (1980). Evidence of molecular interactions in drag reduction in turbulent pipe flows. Polymer Engineering & Science, 20(7), 451–455.CrossRefGoogle Scholar
  18. Bilgen, E. (1971). Fifth intern. conf. on fluid scaling. H4. Coventry, UK: University of Warwick.Google Scholar
  19. Bilgen, E., & Boulos, R. (1972). Turbulent flow of drag reducing fluids between concentric rotating cylinders. Transactions of the American Society of Mechanical Engineers, 1, 25–30.Google Scholar
  20. Bilgen, E., & Boulos, R. (1973). Friction reduction by chemical additives in the turbulent flow of fibre suspensions. The Canadian Journal of Chemical Engineering, 51(4), 405–411.CrossRefGoogle Scholar
  21. Bilgen, E., & Vasseur, P. (1974). On the friction reducing non-Newtonian flow around an enclosed disk. Transactions ASME Journal of Applied Mechanics, 41(1), 45–50.CrossRefGoogle Scholar
  22. Black, T. J. (1969). Viscous drag reduction examined in the light of a new model of wall turbulence. In C. S. Wells (Ed.), Viscous drag reduction (pp. 383–407). New York: Plenum Press.CrossRefGoogle Scholar
  23. Blatch, N. S. (1906). Water filtration at Washington D. C. Transactions ASCE, 57, 400–408.Google Scholar
  24. Block, H., Morgan, A. M., & Walker, S. M. (1974). The reduction of turbulent drag and the degradation of polystyrene in toluene. In Intern. conf. on drag reduction. Cambridge, UK.Google Scholar
  25. Bobkowicz, A. J., & Gauvin, W. H. (1965). Turbulent flow characteristics of model fiber suspension. The Canadian Journal of Chemical Engineering, 43(2), 87–91.CrossRefGoogle Scholar
  26. Boggs, F. W., & Thompson, J. (1967). Flow properties of dilute solutions of polymer, part I – Mechanism of drag reduction, and part III – Effect of solute on turbulent field. US Rubber Co. Research Center Report on Contract Nos. Nonr-3120(00) and N00014-66-C0332.Google Scholar
  27. Booij, H. L. (1949). In H. R. Kruyt. Colloid science II, association colloids, Ch. 14, Elsevier Publishing Company, Amsterdam, pp. 681–722.Google Scholar
  28. Brady, A. P. (1949). The diffuse ionic layer in relation to lamellar micelles in aqueous solutions of colloidal electrolytes. The Journal of Chemical Physics, 53(6), 947–955.CrossRefGoogle Scholar
  29. Brautlecht, C. A., & Sethi, J. R. (1933). Flow of paper pulps in pipelines. Industrial and Engineering Chemistry, 25(3), 283–288.CrossRefGoogle Scholar
  30. Brecht, W., & Heller, H. (1935). Der rohrreibungsverlust von stoffaufschwemmungen. Wochenblatt für Papierfabrikation, 16, 264, 342, 380, 439, 474, 529, 587, 641, 714, 747.Google Scholar
  31. Brennan, C. (1970). Some cavitation experiments with dilute polymer solutions. Journal of Fluid Mechanics, 44(1), 51–63.CrossRefGoogle Scholar
  32. Brostow, W. (1983). Drag reduction and mechanical degradation in polymer solutions in flow. Polymer, 24(5), 631–638.CrossRefGoogle Scholar
  33. Bugliarello, G., & Daily, J. W. (1961). Rheological models and laminar shear flow of fiber suspensions. TAPPI, 44, 881–893.Google Scholar
  34. Burger, E. D., Chorn, L. G., & Perkins, T. K. (1980). Studies of drag reduction conducted over a broad range of pipeline conditions when flowing Prudhoe Bay crude-oil. Journal of Rheology, 24(5), 603–626.CrossRefGoogle Scholar
  35. Burger, E. D., Munk, W. R., & Wahl, H. A. (1980). Flow increase in the trans Alaska pipeline using a polymeric drag reducing additive. Paper SPE 9419, 55th Annual Fall Conference of Society of Petroleum Engineers of AIME. Dallas, TX, September 21–24.Google Scholar
  36. Canham, H. J., Catchpole, J. P., & Long, R. F. (1971). Boundary layer additives to reduce ship resistance. The Naval Architect Journal, 2, 187–213.Google Scholar
  37. Castro, W. E., & Neuwirth, J. G. (1971). Reducing fluid friction with okra. Chemische Technik, 1, 697.Google Scholar
  38. Chang, H. F., & Darby, R. (1983). Effect of shear degradation on the rheological properties of dilute drag-reducing polymer solutions. Journal of Rheology, 27(1), 77–88.CrossRefGoogle Scholar
  39. Chashehin, I. P., Shalavin, N. T., & Saenko, V. A. (1975). Effect of polymeric additives on drag reduction. International Journal of Chemical Engineering, 15, 88.Google Scholar
  40. Chhabra, R. P., Uhlherr, P. H., & Boger, D. V. (1980). The influence of fluid elasticity on the drag coefficient for creeping flow around a sphere. Journal of Non-Newtonian Fluid Mechanics, 6(3–4), 187–199.CrossRefGoogle Scholar
  41. Corino, E. R., & Brodkey, R. S. (1969). A visual investigation of the wall region in turbulent flow. Journal of Fluid Mechanics, 37(1), 1–30.CrossRefGoogle Scholar
  42. Corredor, F. E., Bizhani, M., & Kuru, E. (2015). Experimental investigation of drag reducing fluid flow in annular geometry using particle image velocimetry technique. Transactions ASME Journal Fluid Engineering (online), 137(8), 08113 (16).Google Scholar
  43. Cottrell, F. R., Merrill, E. W., & Smith, K. A. (1969). Conformation of polyisobutylene in dilute solution subjected to a hydrodynamic shear field. Journal of Polymer Science Series A-2, 7(8), 1415–1434.Google Scholar
  44. Cottrell, F. R., Merrill, E. W., & Smith, K. A. (1970). Intrinsic viscosity and axial extension ratio of random coiling macromolecules in a hydrodynamic shear field. Journal of Polymer Science Series A-2, 8(2), 289–294.CrossRefGoogle Scholar
  45. Cox, L. R., North, A. M., & Dunlop, E. H. (1974). Intern. conf. on drag reduction. Cambridge, UK: BHRA.Google Scholar
  46. Daily, J. W., & Bugliarello, G. (1961). Basic data for dilute fiber suspensionsin uniform flow with shear. TAPPI, 44, 497–512.Google Scholar
  47. Darby, R. (1972). A review and evaluation of drag reduction theories. Naval Research Lab., NRL Memo Report 2446.Google Scholar
  48. Davies, G. A., & Ponter, A. B. (1966). Turbulent flow properties of dilute polymer solutions. Nature, 212(5057), 66.CrossRefGoogle Scholar
  49. Debye, P., & Anacker, E. W. (1951). Micelle shape from disymmetry measurements. The Journal of Physical and Colloid Chemistry, 55(5), 644–655.CrossRefGoogle Scholar
  50. Denn, M. M., & Roisman, J. J. (1969). Rotational stability and measurement of normal stress functions in dilute polymer solutions. AICHE Journal, 15(3), 454–459.CrossRefGoogle Scholar
  51. Dever, C. D., Harbour, R. J., & Siefert, W. F. (1962). Method of decreasing friction loss in flowing liquids. US Patent 3,023,760.Google Scholar
  52. Dodge, D. W., & Metzner, A. B. (1959). Turbulent flow of non-newtonian systems. AICHE Journal, 5(2), 189–204.CrossRefGoogle Scholar
  53. Dove, H. L. (1966). The effect on resistance of polymer additives injected into a boundary layer of a frigate model. In Proc. 11th intern. towing tank conf. Tokyo, Japan.Google Scholar
  54. Eckelmann, H. (1973). Bericht Nr (p. 101). Gottingen, Germany: Max-Planck-Institut fur Stromungsforchung.Google Scholar
  55. Eissenberg, D. M. (1964). Measurement and correlation of turbulent friction factors of thoria suspensions at elevated temperatures. AICHE Journal, 10(3), 403–407.CrossRefGoogle Scholar
  56. Elata, C., & Poreh, M. (1966). Momentum transfer in turbulent shear flow of an elastico-viscous fluid. Rheologica Acta, 5(2), 148–151.CrossRefGoogle Scholar
  57. Elata, C., & Tirosh, J. (1965). Frictional drag reduction. Israel Journal of Technology, 3(1), 1–6.CrossRefGoogle Scholar
  58. Elias, V., & Vocel, J. (1978). Vodohospodarsky eas. SAV, 26, 610.Google Scholar
  59. Elliot, J. H., & Stow, F. S. (1971). Solutions of drag-reducing polymers – diameter effect and rheological properties. Journal of Applied Polymer Science, 15(11), 2743.CrossRefGoogle Scholar
  60. Ellis, A. T., Ting, R. Y., & Nadolink, R. H. (1970). Some effects of storage and shear history on the friction reducing properties of dilute polymer solutions. AIAA Paper 70–532.Google Scholar
  61. Ellis, H. D. (1970). Effects of shear treatment of drag-reducing polymer solutions and fibre suspensions. Nature, 226(5243), 352–353.CrossRefGoogle Scholar
  62. El’perin, I. T., Smol’skii, B. M., & Leventhal, L. I. (1967). Decreasing the hydrodynamic resistance of pipelines. International Journal of Chemical Engineering, 7, 276–295.Google Scholar
  63. Emerson, A. (1965). Model experiments using dilute polymer solutions instead of water. Transactions North East Coast Institution of Engineers & Shipbuilders, 81, 201.Google Scholar
  64. Ernst, W. D. (1966). Investigation of turbulent shear flow of dilute aqueous CMC solutions. AICHE Journal, 12(3), 581–586.CrossRefGoogle Scholar
  65. Ernst, W. D. (1967). Turbulent flow of elasticoviscous non-newtonian fluid. AIAA Journal, 5(5), 906–909.CrossRefGoogle Scholar
  66. Evans, A. P. (1974). A new drag-reducing polymer with improved shear stability for nonaqueous systems. Journal of Applied Polymer Science, 18(7), 1919–1925.CrossRefGoogle Scholar
  67. Fabula, A. G. (1971). Fire-fighting benefits of polymeric friction reduction. Transactions ASME Journal of Basic Engineering, 93(3), 453–455.CrossRefGoogle Scholar
  68. Fabula, A. G., Hoyt, J. W., & Crawford, H. R. (1963). Turbulent flow characterisitcs of dilute aqueous solutions of high polymers. The Bulletin of the American Physical Society, 8, 15.Google Scholar
  69. Fajzullaev, D. P. (1974). Uvelicenije raschoda vody v trubo-provdach s pomose ju maloj dobavky preparata E-1, Doklady AV UzSSR, 7.Google Scholar
  70. Fisher, M. C., & Ash, R. L. (1974). A general review of the concepts for reducing skin friction, including recommendations for future studies. NASA TMX, 2894, L-9119.Google Scholar
  71. Fitzgerald, D. (1967). Brit. soc. of rheol. symp. on non-newtonian flow through pipes and passages. Shrivenham, UK.Google Scholar
  72. Forester, R. H., Larson, R. F., Hyden, J. W., & Wetzel, J. M. (1969). Effects of polymer addition on friction in a 10-inch diameter pipe. Journal of Hydronautics, 3, 59.CrossRefGoogle Scholar
  73. Forrest, F., & Grierson, G. A. (1931). Friction losses in cast iron pipe carrying papaer stock. Paper Trade Journal, 92, 39–41.Google Scholar
  74. Fortuin, J. M., & Klijn, P. J. (1982). Drag reduction and random surface renewal in turbulent pipe flow. Chemical Engineering Science, 37(4), 611–623.CrossRefGoogle Scholar
  75. Fortuna, G., & Hanratty, T. J. (1972). The influence of drag reducing polymers in turbulence in the viscous sublayer. Journal of Fluid Mechanics, 53(3), 575–586.CrossRefGoogle Scholar
  76. Fruman, D. H., Sundaram, T. R., & Daugard, S. J. (1974). Effect of drag-reducing polymer injection on the lift and drag of a two-dimensional hydrofoil. In Proc. intern. conf. on drag reduction. Cambridge, UK: Paper E2.Google Scholar
  77. Fruman, D., & Sulmont, P. (1969). Reduction de la resistance de prottement d’une plaque plane dans les solutions de polymeres. Comptes Rendus. Académie des Sciences, 268, 1493.Google Scholar
  78. Gadd, G. E. (1965). Turbulence damping and drag reduction produced by certain additives in water. Nature, 206(4983), 463–467.CrossRefGoogle Scholar
  79. Gadd, G. E. (1966a). Reduction of turbulent friction in liquids by dissolved additives. Nature, 212(5065), 874–877.CrossRefGoogle Scholar
  80. Gadd, G. E. (1966b). Differences in normal stress in aqueous solutions of turbulent drag reducing additives. Nature, 212(5069), 1348–1350.CrossRefGoogle Scholar
  81. Gadd, G. E. (1968). Effects of drag-reducing additives on vortex stretching. Nature, 217(5133), 1040–1042.CrossRefGoogle Scholar
  82. Gadd, G. E. (1971a). Friction reduction. In Encyclopedia of polymer science and technology (Vol. vol. 15). New York: Wiley.Google Scholar
  83. Gadd, G. E. (1971b). Reduction of turbulent drag in liquids. Nature, 230(10), 29–31.Google Scholar
  84. Giesekus, H., Bewersdorff, H. W., Dembek, G., Kwade, M., Martischius, F. D., & Scharf, R. (1981). Fortschritte der. Verfahrenstechnik, 19, 3.Google Scholar
  85. Giles, W. B. (1968). Similarity laws of friction-reduced flows. Journal of Hydronautics, 2(1), 34–40.CrossRefMathSciNetGoogle Scholar
  86. Giles, W. B., & Pettit, W. T. (1967). Stability of dilute viscoelastic flow. Nature, 216(5114), 470–472.CrossRefGoogle Scholar
  87. Gold, P. T., Amar, P. K., & Swaidan, B. E. (1973). Friction reduction degradation in dilute poly(ethylene oxide) solutions. Journal of Applied Polymer Science, 17(2), 333–350.CrossRefGoogle Scholar
  88. Goldstein, S. (1965). On the resistance to the rotation of a disc immersed in a fluid. Proceedings of the Cambridge Philosophical Society, 31, 232.CrossRefzbMATHGoogle Scholar
  89. Gollan, A., Tulin, M. P., & Rudy, S. L. (1970). Development and model tests of a surface ship additive system (Report 909-1). Hydronautics Inc. Tech.Google Scholar
  90. Gordon, R. J. (1970a). On the explanation and correlation of turbulent drag reduction in dilute macromolecular solutions. Journal of Applied Polymer Science, 14(8), 2097–2105.CrossRefGoogle Scholar
  91. Gordon, R. J. (1970b). Mechanism for turbulent drag reduction in dilute polymer solutions. Nature, 227(5258), 599–600.CrossRefGoogle Scholar
  92. Gordon, R. J., & Balakrishnan, C. (1972). Vortex inhibitions: A new viscoelastic effect with importance in drag reduction and polymer characterisation. Journal of Applied Polymer Science, 16(7), 1629–1639.CrossRefGoogle Scholar
  93. Goren, Y., & Norbury, J. F. (1967). Turbulent flow of dilute aqueous polymer solutions. Transactions ASME Journal of Basic Engineering, 89(4), 814–822.CrossRefGoogle Scholar
  94. Graham, M. D. (2004). Drag reduction in turbulent flow of polymer solutions. Rheology Reviews, 2, 143–170.Google Scholar
  95. Graham, M. D. (2014). Drag reduction and the dynamics of turbulence in simple and complex fluid. Physics of Fluids, 26, 101301.CrossRefGoogle Scholar
  96. Green, J. H. (1971). Effect of polymer additives on nozzle stream coherence: A preliminary study, Navel Undersea R and D Center TN 504.Google Scholar
  97. Greene, H. L. (1972). Proc. 25th ACEMB. Bal Harbour, FL.Google Scholar
  98. Greene, H. L., Nokes, R. F., & Thomas, L. C. (1970). Drag reduction in pulsed flow of blood. Research in Medical & Engineering, 9, 19.Google Scholar
  99. Greene, H. L., Nokes, R. F., & Thomas, L. C. (1971). Drag reduction phenomena in pulsed blood flow. In ASME symposium on flow. Pittsburgh, PA: Paper 4-4-64.Google Scholar
  100. Greene, H. L., Thomas, L. C., Mostordi, E. A., & Nokes, R. F. (1974). Potential biomedical applications of drag reducing agents. In Proc. intern. conf. on drag reduction. Cambridge, UK.Google Scholar
  101. Greskovich, E. J., & Shries, A. L. (1971). Drag reduction in two-phase flows. Industrial & Engineering Chemistry Fundamentals, 10(4), 646–648.CrossRefGoogle Scholar
  102. Gyr, A. (1968). Analogy between vortex stretching by drag-reducing additives and vortex stretching by fine suspensions. Nature, 219(5157), 928–929.CrossRefGoogle Scholar
  103. Gyr, A. (1974). ETH Zurich: Inst. fur hydromechanik und wasserwirtschaft (Report R7-74).Google Scholar
  104. Gyr, A., & Bewersdorff, H.-W. (1995). Drag reduction of turbulent flows by additives. Dordrecht, Netherlands: Kluwer Academic Publisher.CrossRefzbMATHGoogle Scholar
  105. Halsey, G. D. (1953). On the structure of micelles. The Journal of Physical Chemistry, 57(1), 87–89.CrossRefGoogle Scholar
  106. Hampson, L. G., & Naylor, H. (1975). Friction reduction in journal bearings by high molecular weight polymers. In Proc. of the 2nd leads-lyon symposium on tribology (pp. 70–72). London: Mechanical Engineering Publications Ltd.Google Scholar
  107. Hand, J. H., & Williams, M. C. (1969). Effect of secondary polymer structure on the drag-reducing phenomenon. Journal of Applied Polymer Science, 13(11), 2499–2503.CrossRefGoogle Scholar
  108. Hand, J. H., & Williams, M. C. (1971). The role of polymer conformation in drag reduction. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 6.Google Scholar
  109. Hartley, G. S. (1949). Organised structure in soap solutions. Nature, 163(4150), 767–768.CrossRefGoogle Scholar
  110. Hershey, H. C., & Zakin, J. L. (1967). Existence of two types of drag reduction in pipe flow of dilute polymer solutions. Journal of Industrial and Engineering Chemistry, 6(3), 381–387.Google Scholar
  111. Hershey, H. C., Kuo, J. T., & McMillan, M. L. (1975). Drag reduction of straight and branched chain aluminum disoaps. Industrial and Engineering Chemistry Product Research and Development, 14(3), 192–199.CrossRefGoogle Scholar
  112. Holtmeyer, M. D., & Chatterji, J. (1980). Study of oil soluble polymers as drag reducers. Polymer Engineering & Science, 20(7), 473–477.CrossRefGoogle Scholar
  113. Hoyt, J. W. (1966a). The use of Porphyridium Aerugineum as a sealing aid in towing tanks. In Proc. 11th inter. towing tank conf. Tokyo.Google Scholar
  114. Hoyt, J. W. (1966b). Turbulent flow properties of deoxyribonucleic acid solutions. Nature, 211(5045), 170–171.CrossRefGoogle Scholar
  115. Hoyt, J. W. (1966c). Friction reduction as an estimator of molecular weight. Journal of Polymer Science Part B, 4(10), 713–716.CrossRefGoogle Scholar
  116. Hoyt, J. W. (1968). Turbulent flow properties of polysaccharide solutions. In Solution properties of natural polymers, 207, special publication N. 23. London: The Chemical Society.Google Scholar
  117. Hoyt, J. W. (1971). Blood transfusion fluids having reduced turbulent friction properties. US Patent No. 3,590,124.Google Scholar
  118. Hoyt, J. W. (1972a). The effect of additives on fluid friction. Transactions ASME Journal of Basic Engineering, 94(2), 258–285.CrossRefGoogle Scholar
  119. Hoyt, J. W. (1972b). Turbulent flow of drag-reducing suspensions (Report NUC TP 299). Naval Undersea Center.Google Scholar
  120. Hoyt, J. W. (1974). Hydrodynamic drag reduction due to fish slimes. In Symposium on swimming and flying in nature. California institute of technology. New York: Plenum Press.Google Scholar
  121. Hoyt, J. W. (1986). Drag reduction. In Encyclopedia of polymer science and engineering (Vol. vol. 5, p. 129). New York: Wiley.Google Scholar
  122. Hoyt, J. W., & Fabula, A. G. (1963). Frictional resistance in towing tanks. In Proc. 10th intern. towing tank conf. Teddington, UK.Google Scholar
  123. Hoyt, J. W., & Fabula, A. G. (1964). The effect of additives on fluid friction. In Proc. 5th symp. on naval hydrodynamics (Vol. 112, p. 947). Bergen, Norway: Office of Naval Research.Google Scholar
  124. Hoyt, J. W., & Soli, G. (1965). Algal cultures: Ability to reduce turbulent friction in flow. Science, 149(3691), 1509–1511.CrossRefGoogle Scholar
  125. Hoyt, J. W., & White, W. D. (1966). High polymer additive on turbulent flow of dextran, saline solution and plasma. In Proc. 19th annual conf. in engg. on medicine and biology (p. 49).Google Scholar
  126. Hunston, D. L., Griffith, J. R., & Little, R. C. (1973). Drag reducing properties of polyphosphates. Nature Physical Sciences, 245(148), 140–141.CrossRefGoogle Scholar
  127. Jackson, H. C., & Mayer, P. G. (1970). Georgia institute of technology: Unsteady flow of dilute aqueous polymer solutions in pipe networks – A method to improve water distribution. Water Resources Center Report WRC 0170.Google Scholar
  128. James, D. F., & Gupta, O. P. (1971). Drag on circular cylinders in dilute polymer solutions, AIChE. Chemical Engineering Progress Symposium Series No. 111, 67, 62.Google Scholar
  129. Johnson, B., & Barchi, R. H. (1968). Effect of drag-reducing additives on boundary layer turbulence. Journal of Hydronautics, 2(3), 168–175.CrossRefGoogle Scholar
  130. Jones, W. M., & Marshall, D. E. (1969). Relaxation effects in couette flow between rotating cylinders. Journal of Physics D, 2(6), 809–814.CrossRefGoogle Scholar
  131. Kale, D. D., & Metzner, A. B. (1974). Turbulent drag reduction in fiber-polymer systems: Specificity considerations. AICHE Journal, 20(6), 1218–1219.CrossRefGoogle Scholar
  132. Kale, D. D., & Metzner, A. B. (1976). Turbulent drag reduction in dilute fiber suspensions: Mechanistic consideration. AICHE Journal, 22(4), 669–674.CrossRefGoogle Scholar
  133. Kato, H., Watanabe, K., & Ueda, K. (1972). Frictional resistance of rotating disk in dilute polymer solutions: Part I. enclosed disk. Bulletin of the JSME, 15(88), 1185–1196.CrossRefGoogle Scholar
  134. Kawada, H., & Tagori, T. (1973). Proc. Ann. Meeting JSME.Google Scholar
  135. Kenis, P. R. (1968a). Drag reduction by bacterial metabolites. Nature, 217(5132), 940–942.CrossRefGoogle Scholar
  136. Kenis, P. R. (1968b). Effects of pH on the production of bacterial extracellular drag-reducing polymers. Journal of Applied Microbiology, 16(8), 1253–1254.CrossRefGoogle Scholar
  137. Kenis, P. R. (1969). Turbulent-flow drag reduction by polymers from marine and fresh water bacteria. International Shipbuilding Progress, 16(183), 342–348.CrossRefGoogle Scholar
  138. Kenis, P. R. (1971). Turbulent flow friction reduction effectiveness and hydrodynamic degradation of polysaccharides and synthetic polymers. Applied Polymer Science, 15, 607.CrossRefGoogle Scholar
  139. Kenis, P. R., & Hoyt, J. W. (1971). Friction reduction by Algal and bacterial polymers (Report No. NUC-TP-240). Naval Undersea Research & Development Center, San Diego.Google Scholar
  140. Kerekes, R. J., & Douglas, W. J. (1972). Viscosity properties of suspensions at the limiting conditions for turbulent drag reduction. The Canadian Journal of Chemical Engineering, 50(2), 228–231.CrossRefGoogle Scholar
  141. Killen, J. M. (1972). University of minnesota, St. Anthony Falls, hydraulic lab (Project Report No. 123).Google Scholar
  142. Killen, J. M., & Almo, J. (1969). An experimental study of the effects of dilute solutions of polymer additives on boundary layer characteristics. In C. S. Wells (Ed.), Viscous drag reduction (pp. 447–461). New York: Plenum Press.CrossRefGoogle Scholar
  143. Killian, F. P. (1970). Uber die verminderung des reibungswertes von grenzschichtstrosungen viscoelastischer flussigkeiten. In Mitteilungen der versuchanstalt fur wasserbau and schiffsbau (pp. Heft 51–Heft 52). Berlin, Germany.Google Scholar
  144. Kim, O. K., Little, R. C., & Ting, R. Y. (1973). Polymer structural effects in turbulent drag reduction. AICHE Chemical Engineering Progress Symposium Series No. 130, 69, 39.Google Scholar
  145. Kinnier, J. W. (1965). A correlation between friction reduction and molecular size for the flow of dilute aqueous polyethyleneoxide solutions in pipes (MS Thesis), US Naval Postgraduate School, Monterey.Google Scholar
  146. Kirdyashkin, A. G. (1977). Fluid mechanics. Soviet Research, 6, 79.Google Scholar
  147. Kobets, G. F. (1969). The mechanism of the influence of dissolved macromolecules (carboxymethylcellulose, polyvinyl alcohol, polysaccharides, slime of fish) on turbulent friction. Bionika, 3, 72.Google Scholar
  148. Kobets, G. F., Zar’yalova, V. S., & Komarova, M. L. (1969). The influence of the slime of fish on turbulent friction. Bionika, 3, 80.Google Scholar
  149. Kotenko, M., Oskarsson, H., Bojesen, C., & Nielsen, M. P. (2019). An experimental study of the drag reducing surfactant for district heating and cooling. Energy, 178, 72–78.CrossRefGoogle Scholar
  150. Kowalski, T. (1966). Reduction of frictional drag by non-newtonian additives. Naval Engineers Journal, 78(2), 293–297.CrossRefGoogle Scholar
  151. Kowalski, T. (1968a). Higher ships speeds due to injection of non-newtonian additives. Paper presented in Montreal on January 9th at the Eastern Canadian Section.Google Scholar
  152. Kowalski, T. (1968b). Turbulence suppression and viscous drag reduction by non-newtonian additives. Transactions RINA, 110, 207–219.Google Scholar
  153. Kruyt, H. R. (1949). In H. L. Booij. Association colloids, colloid science II, Elsevier Publishing Company, Amsterdam, p. 681.Google Scholar
  154. Kumar, S. M., & Sylvester, N. D. (1973). Effects of a drag-reducing polymer on the turbulent boundary layer. AICHE Chemical Engineering Progress Symposium Series No. 130, 69, 1.Google Scholar
  155. Kuo, Y., & Tanner, R. I. (1972). A burgers-type model of turbulent decay in non-newtonian fluid. Transactions ASME Journal of Applied Mechanics, 39(3), 661–666.CrossRefGoogle Scholar
  156. Kuriyama, K. (1962). Temperature dependence of micellar molecular weight of non-ionic surfactant in the presence of various additives. Kolloid-Z u. Z-Polymere, 180(1), 55–64.CrossRefGoogle Scholar
  157. Lacey, P. M. (1974). Drag reduction by long-chain polymers. Chemical Engineering Science, 29(6), 1495–1496.CrossRefGoogle Scholar
  158. Landahl, M. T. (1972). Drag reduction (and shear flow) by polymer addition (Report AFOSR-TR-73-1200). MIT Cambridge/MA, Dept. Aeronaut. Astronaut.Google Scholar
  159. Lang, T. G. (1969). The effect of drag reduction and other improvements on the design and performance of submerged vehicles. In C. S. Wells (Ed.), Viscous drag reduction (pp. 313–330). New York: Plenum Press.CrossRefGoogle Scholar
  160. Latto, B., & Czaban, J. (1974). On the performance of turbomachinery in the presence of aqueous polymer solutions. In Proc. intern. Conf. On drag reduction. Cambridge, UK.Google Scholar
  161. Latto, B., & Shen, C. H. (1970). Effect of dilute polymer injection on external boundary layer phenomena. The Canadian Journal of Chemical Engineering, 48(1), 34–38.CrossRefGoogle Scholar
  162. Lee, K. C., & Zakin, J. L. (1973). Drag reduction in hydrocarbon-aluminum soap polymer systems. AICHE Chemical Engineering Progress Symposium Series No. 130, 69, 45.Google Scholar
  163. Lee, W. K., Vaselaski, R. C., & Metzner, A. B. (1974). Turbulent drag reduction in polymer solutions containing suspended fibers. AICHE Journal, 20(1), 128–133.CrossRefGoogle Scholar
  164. Lehmann, A. F., & Suessmann, R. T. (1972). An experimental study of lift and drag of a hydrofoil with polymer ejection (Report No. 72-94). Oceanics Inc.Google Scholar
  165. Levy, J., & Davies, S. (1967). Drag measurements on a thin plate in dilute polymer solutions. International Shipbuilding Progress, 14(152), 166–175.CrossRefGoogle Scholar
  166. Liaw, G. C., Zakin, J. L., & Patterson, G. K. (1971). Effects of molecular characteristics of polymers on drag reduction. AICHE Journal, 17(2), 391–397.CrossRefGoogle Scholar
  167. Little, R. C. (1967). Drag reduction by dilute polymer solutions in turbulent flow (Report 6542). Naval Research Lab.Google Scholar
  168. Little, R. C. (1969). Displacement of aqueous drag-reducing polymer solutions. Industrial & Engineering Chemistry Fundamentals, 8(3), 520–521.CrossRefGoogle Scholar
  169. Little, R. C. (1971). The effect of added salt on the flow of highly dilute solutions of poly(ethylene oxide) polymers. Journal of Applied Polymer Science, 15(12), 3117–3125.CrossRefGoogle Scholar
  170. Little, R. C., & Patterson, R. L. (1974). Turbulent friction reduction by aqueous poly(ethylene oxide) polymer solutions as a function of salt concentration. Journal of Applied Polymer Science, 18(5), 1529–1539.CrossRefGoogle Scholar
  171. Little, R. C., & Wiegard, M. (1971). The flow of very dilute polyox solutions into a region of sudden capillary tube enlargement. Journal of Applied Polymer Science, 15, 1515.CrossRefGoogle Scholar
  172. Little, R. C., Hansen, R. J., Hunston, D. L., Kim, O. K., Patterson, R. L., & Ting, R. Y. (1975). The drag reduction phenomenon. Observed characteristics, improved agents and proposed mechanisms. Industrial & Engineering Chemistry Fundamentals, 14(4), 283–296.CrossRefGoogle Scholar
  173. Lockett, F. J. (1964). Fluid dynamics approach to the Toms effect. Nature, 222, 937–939.CrossRefGoogle Scholar
  174. Lumley, J. L. (1964). Turbulence in non-newtonian fluids. Physics of Fluids, 7(3), 335–337.CrossRefMathSciNetzbMATHGoogle Scholar
  175. Lumley, J. L. (1967). The Toms phenomenon: Anamolous effects in turbulent flows of dilute solutions of high molecular weight linear polymers. Applied Mechanics Reviews, 20(12), 1139–1149.Google Scholar
  176. Lumley, J. L. (1969). Drag reduction by additives. Annual Reviews of Fluid Mechanics, 1, 367–384.CrossRefGoogle Scholar
  177. Lumley, J. L. (1970). Concerning the behavior of dilute solutions of linear polymers. In Proc. drag reduction workshop. Boston, MA: ONR.Google Scholar
  178. Lumley, J. L. (1973). Drag reduction in turbulent flow by polymer additives. Journal of Polymer Science Macromolecular Reviews, 7(1), 263–290.CrossRefGoogle Scholar
  179. Lummus, J. L., & Randall, B. V. (1964). Development of drilling fluid friction additives for project MOHOLE (Report F64-P-54). Pan American Petroleum Corp. Research Dept. Job No. 3918.Google Scholar
  180. Marris, A. W., & Wang, J. T.-S. (1965). In J. W. Hoyt (Ed.), Symposium on rheology. New York: ASME.zbMATHGoogle Scholar
  181. Maude, A. D., & Whitmore, R. L. (1958). The turbulent flow of suspensions in tubes. Chemical Engineering Research and Design, 36a, 297–305.Google Scholar
  182. Maxson, A., Watson, L., Karandikar, P., & Zakin, J. (2017). Heat transfer enhancement in turbulent drag reducing surfactant solutions by agitated heat exchangers. International Journal of Heat and Mass Transfer, 109, 1044–1051.CrossRefGoogle Scholar
  183. McMillan, M. L. (1970). Drag reduction and light scattering studies of aluminum disoaps in toulene (PhD Thesis). Ohio State University, Columbus, OH.Google Scholar
  184. McMillan, M. L., Hershey, H. C., & Baxter, R. (1971). Effects of aging, concentration, temperature, method of preparation, and other variables on the drag reduction of aluminum disoaps in toulene. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 27.Google Scholar
  185. Mejean, L., & Boulos, M. I. (1976). Caracteristiques rheologiques des suspensions de tourbe. The Canadian Journal of Chemical Engineering, 54(5), 382–391.CrossRefGoogle Scholar
  186. Melton, L. L., & Malone, W. T. (1974). Fluid mechanics research and engineering applications in non-newtonian fluid systems. SPE Journal, 4(1), 56–66.Google Scholar
  187. Mel’tser, L. Z., El’perin, I. T., Leventhal, L. I., & Kovalenko, V. S. (1972). Effect of polyacrylamide additive on hydraulic resistances of brine systems. Kholod Tekh Tekhnol, 15, 36.Google Scholar
  188. Merkulov, V. I., & Khotinskaya, V. D. (1969). The mechanism of drag reduction in different types of fish (negative viscosity of dilute solutions of slime measured by the Oswald viscometer). Bionika, 3, 96.Google Scholar
  189. Merrill, E. W., Mickley, H. S., & Ram, A. (1962). Instability in couette flow of solutions of macromolecules. Journal of Fluid Mechanics, 13, 86–90.CrossRefzbMATHGoogle Scholar
  190. Meter, D. M. (1964). Tube flow of non-newtonian polymer solutions: Part II – turbulent flow. AICHE Journal, 10(6), 881–884.CrossRefGoogle Scholar
  191. Metzner, A. B., & Metzner, A. P. (1970). Stress levels in rapid extensional flows of polymeric fluids. Rheologica Acta, 9(2), 174–181.CrossRefGoogle Scholar
  192. Metzner, A. B., & Park, M. G. (1964). Turbulent flow characteristics of viscoelastic fluids. Journal of Fluid Mechanics, 20(2), 291–303.CrossRefGoogle Scholar
  193. Mih, W., & Parker, J. (1967). Velocity profile measurements and a phenomenological description of turbulent fiber suspension pipe flow. TAPPI, 50(5), 237–246.Google Scholar
  194. Mueller, H. G., & Klein, J. (1980). Mechanical shear degradation of a polymer solution by capillary flow. Makromolecular Rapid Communication, 1(1), 27–29.CrossRefGoogle Scholar
  195. Mysels, K. J. (1949). Flow of thickened fluids. US Patent No. 2,492,173 (Dec 27).Google Scholar
  196. Mysels, K. J. (1971). Early experiments with viscous drag reduction. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 1017.Google Scholar
  197. Myska, J., & Simeckova, M. (1983). The shape of micelles of a complex soap causing the Toms effect. Colloid & Polymer Science, 261(2), 171–175.CrossRefGoogle Scholar
  198. Nadolink, R. H. (1973). Friction reduction in dilute solutions of polystyrene (Technical Report 4422). Naval Universea Systems Center.Google Scholar
  199. Nadolink, R. H., & Haigh, W. W. (1995). Bibliography on skin friction reduction with polymers and other boundary-layer additives. Applied Mechanics Reviews, 48(7), 351–460.CrossRefGoogle Scholar
  200. Nagarajan, R., Davies, G. S., & Venkateswarlu, D. (1974). Drag reduction characteristics of polyacrylamide additives. The Chemical Engineering Journal, 7(3), 249–252.CrossRefGoogle Scholar
  201. Nash, T. (1956a). Modification of the bulk mechanical properties of water by complex formation in dilute solution. Nature, 177(4516), 948.CrossRefGoogle Scholar
  202. Nash, T. (1956b). Conjugation with lone-pair electrons. II the adsorption of napthols by cationic micelles in dilute aqueous solution. Journal of Applied Chemistry, 6(12), 539–546.CrossRefGoogle Scholar
  203. Nash, T. (1958). The interaction of some naphalene derivatives with a cationic soap below the critical micelle concentration. Journal of Colloid Science, 13(2), 134–139.CrossRefGoogle Scholar
  204. Nokes, R. F., Greene, H. L., & Thomas, L. C. (1971). Ventricular myograph tracing during polyacrylamide perfusion. In Proc. 24th annual conf. on engg. in medicine and biology. Las Vegas.Google Scholar
  205. Oldroyd, J. G. (1948). A suggested method of detecting wall effects on turbulent flow through tubes. In Proc. 1st intern. congr. on rheology, II (p. 130). North Holland, Amsterdam.Google Scholar
  206. Oltmann, P. (1969). Verusche zur verminderung des reibungwiderstandes von schiffsmodelen. Schiff und Hafen, 21, 3.Google Scholar
  207. Ousterhout, R. S., & Hall, C. D. (1961). Reduction of friction loss in fracturing operations. The Journal of Petroleum Technology, 13(3), 217–222.CrossRefGoogle Scholar
  208. Palyvos, J. A. (1974). Drag reduction and associated phenomena in internal and external liquid flows (Report No. 741). Thermodynamics and Transport Phenomena Lab, National Techn Univ., Athens 147, Greece.Google Scholar
  209. Parker, C. A., & Joyce, T. A. (1974). Drag reduction and molecular structure. The interaction of polyethylene amine with some linear high polymers. Journal of Applied Polymer Science, 18(1), 155–165.CrossRefGoogle Scholar
  210. Paterson, R. W., & Abernathy, F. H. (1970). Turbulent flow drag reduction and degradation with dilute polymer solutions. Journal of Fluid Mechanics, 43(4), 689–710.CrossRefGoogle Scholar
  211. Patterson, G. K., & Zakin, J. L. (1968). Prediction of drag reduction with a viscoelastic model. AICHE Journal, 14(3), 434–439.CrossRefGoogle Scholar
  212. Patterson, G. K., Zakin, J. L., & Rodriguez, J. M. (1969). Drag reduction – polymer solutions, soap solutions and solid particle suspensions in pipe flow. Industrial and Engineering Chemistry, 61(1), 22–30.CrossRefGoogle Scholar
  213. Pereira, A. S., Mompean, G., Thais, L., & Soares, E. J. (2017). Transient aspects of drag reducing plane couette flows. Journal of Non-Newtonian Fluid Mechanics, 241, 60–69.CrossRefMathSciNetGoogle Scholar
  214. Peterlin, A. (1970). Molecular model of drag reduction by polymer solutes. Nature, 227(5258), 598–599.CrossRefGoogle Scholar
  215. Peyser, P. (1973). The drag reduction of chrysotile asbestos dispersions. Journal of Applied Polymer Science, 17(2), 421–431.CrossRefGoogle Scholar
  216. Peyser, P., & Little, R. C. (1971). The drag reduction of dilute polymer solutions as a function of solvent power, viscosity and temperature. Journal of Applied Polymer Science, 15(11), 2623–2637.CrossRefGoogle Scholar
  217. Pfenninger, W. (1967). A hypothesis of the reduction of turbulent friction drag in fluid flows by means of additives. Northrop Corp. Norair Division Report BLC-179.Google Scholar
  218. Pilpel, N. (1954). On gel formation in soaps. Journal of Colloid Science, 9(4), 285–299.CrossRefGoogle Scholar
  219. Pilpel, N. (1966a). Viscoelasticity of aqueous soap solutions. Part 3. Transactions of the Faraday Society, 62, 1015–1022.CrossRefGoogle Scholar
  220. Pilpel, N. (1966b). Viscoelasticity of aqueous soap solutions. Part 4. – effect of alcohols. Transactions of the Faraday Society, 62, 2941–2952.CrossRefGoogle Scholar
  221. Pirih, R. J., & Swanson, W. M. (1972). Drag reduction and turbulence modification in rigid particle suspensions. The Canadian Journal of Chemical Engineering, 50(2), 221–227.CrossRefGoogle Scholar
  222. Polishchunk, A. M., Raiskii, Y. D., & Temchin, A. Z. (1972). Effect of small addition of polyisobutylene on the turbulent flow of kerosene in a pipe. Neftyanoe Khozyaistvo (Petroleum Industry), 50, 60.Google Scholar
  223. Pollert, J. (1977). Proc. second intern. conf. on drag reduction (pp. B3–B37). Cambridge, UK: BHRA Fluid Engg.Google Scholar
  224. Poreh, M., Zakin, J. L., Brosh, A., & Warsharsky, M. (1970). Drag reduction in hydraulic transport of solids. Proceedings of the ASCE Hydraulics Division, 4, 903–909.Google Scholar
  225. Prather, R. J. (1966). Investigations of the ultrasonic dynamic viscoelastic properties of aqueous poly(ethylene oxide) solutions (MS Thesis). US Naval Postgraduate School, Monterey.Google Scholar
  226. Procaccia, I., L’vov, V. S., & Benzi, R. (2008). Theory of drag reduction by polymers in wall-bounded turbulence. Reviews of Modern Physics, 80(1), 225–247.CrossRefGoogle Scholar
  227. Pruitt, G. T., & Crawford, H. R. (1963). Drag reduction, rheology, and capillary end effects of some dilute polymer solutions. Final Report, Westco Research on Contract 60530-8250 to Naval Ordinance Test Section.Google Scholar
  228. Pruitt, G. T., & Crawford, H. R. (1965). Effect of molecular weight and segmental constitution on the drag reduction of water soluble polymers (Report No. DTMB-1).Western Co. under Contract No. Nonr 4306 (00).Google Scholar
  229. Pruitt, G. T., Rosen, B., & Crawford, H. R. (1966). Effect of polymer coiling on drag reduction. Western Co. Report DTMB-2 Nonr 4306 (00).Google Scholar
  230. Pruitt, G. T., Simmons, C. M., Neill, G. H., & Crawford, H. R. (1964). A method to minimise costs of pumping fluids containing friction reducing additives. SPE paper No 997.Google Scholar
  231. Pyatetskii, V. E., & Savshenko, Y. N. (1969). The influence of slime on the flow resistance of fish. Bionika, 3, 90.Google Scholar
  232. Radin, I., Zakin, J. L., & Patterson, G. K. (1969). Exploratory drag reduction studies in non-polar soap systems. In C. S. Wells (Ed.), Viscous drag reduction (pp. 213–231). New York: Plenum Press.CrossRefGoogle Scholar
  233. Radin, I., Zakin, J. L., & Patterson, G. K. (1973). Drag reduction of solid-liquid suspensions in pipe flow. Nature Physical Sciences, 246(149), 11–12.CrossRefGoogle Scholar
  234. Ram, A., & Kadim, A. (1970). Shear degradation of polymer solutions. Journal of Applied Polymer Science, 14(8), 2145–2156.CrossRefGoogle Scholar
  235. Ram, A., Finkelstein, F., & Elata, C. (1967). Reduction of friction in oil pipelines by polymer additives. Industrial & Engineering Chemistry Process Design and Development, 6(3), 309–313.CrossRefGoogle Scholar
  236. Ramakrishnan, C., & Rodriguez, F. (1973). Drag reduction in nonaqueous liquids. AICHE, Chemical Engineering Progress Symposium Series No. 130, 69, 52.Google Scholar
  237. Ripkin, J. F., & Pilch, M. (1963). Studies of the reduction of pipe friction with the non-newtonian additive CMC, St. Anthony Falls hydraulic lab. Technical Paper No. 42, Series B.Google Scholar
  238. Robertson, A. A., & Chang, M. V. (1967). Flocculation studies of fiber suspensions: Influence of zeta potential. Pulp and Paper Magazine of Canada, 68, T438.Google Scholar
  239. Robertson, A. A., & Mason, S. G. (1957). The flow characteristics of dilute fiber suspensions. TAPPI, 40(5), 326–344.Google Scholar
  240. Rodriguez, F. (1971). Drag reduction by a polymeric aluminum soap. Nature Physical Sciences, 230(15), 152–153.CrossRefGoogle Scholar
  241. Rodriguez, J. M., Zakin, J. L., & Patterson, G. K. (1967). Correlation of drag reduction with modified deborah number for dilute polymer solutions. SPE Journal, 7, 325–332.Google Scholar
  242. Rosen, M. W., & Cornford, N. E. (1971). Fluid friction of fish slimes. Nature, 234(5323), 49–51.CrossRefGoogle Scholar
  243. Rubin, H. (1972). Drag reduction application in fire-fighting systems. Proceedings of ASCE Journal Sanitary Engineering, 98, 1.Google Scholar
  244. Rubin, H., & Elata, C. (1966). Stability of couette flow of dilute polymer solutions. Physics of Fluids, 9(10), 1929–1933.CrossRefGoogle Scholar
  245. Rubin, H., & Elata, C. (1971). Turbulent flow of dilute polymer solutions through an annulus. AICHE Journal, 17(4), 990–996.CrossRefGoogle Scholar
  246. Ruckenstein, E. (1973). A note on the mechanism of drag reduction. Journal of Applied Polymer Science, 17(10), 3239–3240.CrossRefGoogle Scholar
  247. Rudd, M. J. (1971). Laser dopplermeter and polymer drag reduction. AICHE Chemical Engineering Progress Symposium Series, 111(67), 21.Google Scholar
  248. Rudd, M. J. (1972). Velocity measurements made with a laser dopplermeter on the turbulent pipe flow of a dilute polymer solution. Journal of Fluid Mechanics, 51(4), 673–685.CrossRefGoogle Scholar
  249. Ruszczycky, M. A. (1965). Sphere drop tests in high polymer solutions. Nature, 206, 614–615.CrossRefGoogle Scholar
  250. Sanders, J. V., Henderson, B. H., & White, R. (1973). Effects of polyethylene oxide solutions on the performance of a small propeller. Journal of Hydronautics, 7(3), 124–128.CrossRefGoogle Scholar
  251. Sarpkaya, T. (1973). Lift and drag measurements on a hydrofoil in dilute polyox solutions. Nature, 241(5385), 114–115.CrossRefGoogle Scholar
  252. Savins, J. G. (1961). Some comments on pumping requirements for non-newtonian fluids. Journal Institute of Petroleum, 47, 329.Google Scholar
  253. Savins, J. G. (1964). Drag reduction characteristics of solution of macromolecules in turbulent pipe flow. SPE Journal, 4(3), 203–214.Google Scholar
  254. Savins, J. G. (1967). A stress controlled drag reduction phenomenon. Rheologica Acta, 6(4), 323–330.CrossRefGoogle Scholar
  255. Savins, J. G. (1968). Method of decreasing friction loss in turbulent liquids. US Patent No. 3,361,213.Google Scholar
  256. Savins, J. G. (1969). Contrasts in the solution drag reduction characteristics of polymer solutions and micellar systems. In C. S. Wells (Ed.), Viscous drag reduction (pp. 183–212). New York: Plenum Press.CrossRefGoogle Scholar
  257. Scott, D. (1969). Slippery water in fire hoses. Science, 164(3887), 1466.CrossRefGoogle Scholar
  258. Sellin, R. H. (1978). Drag reduction in sewers: First results from a permanent installation. Journal of Hydraulic Research, 16(4), 357–371.CrossRefGoogle Scholar
  259. Sellin, R. H., & Barnard, B. J. (1970). Open channel applications for dilute polymer solutions. Journal of Hydraulic Research, 8(2), 219–228.CrossRefGoogle Scholar
  260. Sellin, R. H., & Barnard, B. J. (1971). The use of friction reducing additives to increase the capacity of storm water sewers. Journal of the Institution of Municipal Engineers, 98, 207.Google Scholar
  261. Sellin, R. H., & Ollis, M. J. (1980). Polymer drag reduction in large pipes and sewers: Results of recent field trials. Journal of Rheology, 24(5), 667–684.CrossRefGoogle Scholar
  262. Sellin, R. H., Hoyt, J. W., & Scrivener, O. (1982). The effect of drag reducing additives on fluid flows and their industrial applications. Part 1: Basic aspects. Journal of Hydraulic Research, 20(1), 29–68.CrossRefGoogle Scholar
  263. Sellin, R. H., Hoyt, J. W., Pollert, J., & Scrivener, O. (1982). The effect of drag reducing additives on fluid flows and their industrial applications. Part 2: Present applications and future proposals. Journal of Hydraulic Research, 20, 235–292.CrossRefGoogle Scholar
  264. Seyer, F. A., & Metzner, A. B. (1967a). Turbulent flow properties of viscoelastic fluids. The Canadian Journal of Chemical Engineering, 45(3), 121–126.CrossRefGoogle Scholar
  265. Seyer, F. A., & Metzner, A. B. (1967b). Turbulence phenomena in drag reducing systems, 60th annual AICHE meeting, New York.Google Scholar
  266. Shaver, R. G., & Merrill, E. W. (1959). Turbulent flow of pseudoplastic polymer solutions in straight cylindrical tubes. AICHE Journal, 5(2), 181–188.CrossRefGoogle Scholar
  267. Sheffer, H. (1948). Aluminum soaps as high polymers. Canadian Journal of Research, 26b(6), 481–498.CrossRefGoogle Scholar
  268. Shenoy, A. V. (1976). Drag reduction with surfactants at elevated temperatures. Rheologica Acta, 15(11–12), 658–664.CrossRefGoogle Scholar
  269. Shenoy, A. V. (1984). A review on drag reduction with special reference to micellar systems. Colloid & Polymer Science, 262(4), 319–337.CrossRefGoogle Scholar
  270. Shi, H., Wang, Y., Fang, B., Talmon, Y., Ge, W., Raghavan, S. R., et al. (2011). Light-responsive threadlike micelles as drag reducing fluids with enhanced heat-transfer capabilities. Langmuir, 27(10), 5806–5813.CrossRefGoogle Scholar
  271. Shin, H. (1965). Reduction of drag in turbulence by dilute polymer solutions (ScD Thesis). MIT, Cambridge, MA.Google Scholar
  272. Song, C. S., & Tsai, F. Y. (1966). Experimental investigation of taylor instability using non-newtonian fluids. Project Report Mp-84, St., Anthony Falls Hydraulic Lab.Google Scholar
  273. Sylvester, N. D., & Smith, P. S. (1979). The concentration and friction velocity effects on drag reduction by Dowell-APE in kerosene. Industrial & Engineering Chemistry Product Research and Development, 18(1), 47–49.CrossRefGoogle Scholar
  274. Thomas, D. G. (1962). Transport characteristics of suspensions: Part IV. Friction loss of concentrated – flocculated suspensions in turbulent flow. AICHE Journal, 8(2), 266–271.CrossRefGoogle Scholar
  275. Thorne, P. F. (1974). Drag reduction in fire fighting. In Proc. intern. conf. on drag reduction. Cambridge, UK.Google Scholar
  276. Thorne, P. F., Theobald, C. R., & Mahendran, P. (1975). Drag reduction in fire hose trials at fire service technical college, Part 1. Experiments and Results, Research Note 1033, Part 2: Analysis and Application of results, Research Note 1043.Google Scholar
  277. Ting, R. Y. (1982). Some molecular effects in drag reduction: A summary. Chemical Engineering Communications, 15(5–6), 331–342.CrossRefGoogle Scholar
  278. Ting, R. Y., & Kim, O. K. (1973). Water-soluble polymers. In N. M. Bikales (Ed.), Drag reduction properties of high molecular weight polyacrylamide and related polymers. New York: Plenum Press.CrossRefGoogle Scholar
  279. Tomita, Y. (1970). Pipe flows of dilute aqueous polymer solution: Part 1, experimental study of pipe friction coefficient. Bulletin of JSME, 13(61), 926–934.CrossRefGoogle Scholar
  280. Toms, B. A. (1948). Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proc. 1st intern. congr. on rheology, II (pp. 135–141). Scheveningen, North Holland, Amsterdam.Google Scholar
  281. Tothill, J. T. (1967). Ships in restricted channels – a correlation of model tests, field measurements, and theory. Marine Technologies, 4, 111.Google Scholar
  282. Treiber, K. L., & Sieracki, L. M. (1970). The effect of non-newtonian friction reducing additives in a diesel fuel pipeline (Report No. 101-Z). Columbia Res. Corp.Google Scholar
  283. Tulin, M. P. (1966). Hydrodynamic aspects of macromolecular solutions. In Proc. 6th symp. on naval hydrodynamics ACR-136 (p. 3). ONR: Washington, DC.Google Scholar
  284. Van Driest, E. R. (1970). Turbulent drag reduction of polymeric solutions (long chain molecule additive effect on drag reduction in turbulent flow of aqueous polymeric solutions). Journal of Hydronautics, 4(3), 120–126.CrossRefGoogle Scholar
  285. Van Driest, E. R. (1971). Turbulent flow of non-Newtonian fluids. In Proc. 9th intern. symp. on space tech. and science. Tokyo.Google Scholar
  286. Vanasse, R., Coupal, B., & Boulos, M. I. (1979). Hydraulic transport of peat moss suspensions. The Canadian Journal of Chemical Engineering, 57(2), 238–241.CrossRefGoogle Scholar
  287. Vanoni, V. A. (1946). Transportation of suspended sediment by water. Transactions ASCE, 111, 67–133.Google Scholar
  288. Vanoni, V. A., & Nomicos, G. N. (1960). Resistance properties of sediment laden streams. Transactions ASCE, 125(1), 1140–1167.Google Scholar
  289. Varshney, A., & Steinberg, V. (2018). Drag enhancement and drag reduction in viscoelastic flow. Physics Review Fluids, 3, 103302.CrossRefGoogle Scholar
  290. Vaselaski, R. C., & Metzner, A. B. (1974). Drag reduction in the turbulent flow of fiber suspensions. AICHE Journal, 20(2), 301–306.CrossRefGoogle Scholar
  291. Virk, P. S. (1966). The toms phenomenon – Turbulent pipe flow of dilute polymer solutions, Mass. Inst. of Tech., (ScD Thesis).Google Scholar
  292. Virk, P. S. (1971a). Drag reduction in rough pipes. Journal of Fluid Mechanics, 45(2), 225–246.CrossRefGoogle Scholar
  293. Virk, P. S. (1971b). An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules. Journal of Fluid Mechanics, 45(3), 417–440.CrossRefGoogle Scholar
  294. Virk, P. S. (1975). Drag reduction fundamentals. AICHE Journal, 21(4), 625–656.CrossRefGoogle Scholar
  295. Virk, P. S., Mickley, H. S., & Smith, K. A. (1970). The ultimate asymptote and mean flow structure in Toms’ phenomenon. Transactions ASME Journal of Applied Mechanics, 37(2), 488–493.CrossRefGoogle Scholar
  296. Vogel, V. M., & Patterson, A. M. (1964). An experimental investigation of the effects of additives injected into the boundary layer of an underwater body. In Proc. 5th symp. on naval hydrodynamics ONR-ACR-112 (p. 975). Berge.Google Scholar
  297. Walsh, M. (1967a). On the turbulent flow of dilute polymer solutions (PhD Thesis). California Institute of Technology.Google Scholar
  298. Walsh, M. (1967b). Theory of drag reduction in dilute high-polymer flows. International Shipbuilding Progress, 14(152), 134–139.CrossRefGoogle Scholar
  299. Walters, K., Barnes, H. A., & Dodson, A. C. (1971). Drag reduction in unconventional flow situations. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 1.Google Scholar
  300. Walters, R. R., & Wells, C. S. (1971). An experimental study of turbulent diffusion of drag-reducing polymer additives. Journal of Hydronautics, 5(2), 65–72.CrossRefGoogle Scholar
  301. Wang, Y., Yu, B., Zakin, J. L., & Shi, H. (2011). Review on drag reduction and its heat transfer by additives. Advances in Mechanical Engineering, 17.
  302. Warholic, M. D., Massah, H., & Hanratty, T. J. (1999). Influence of drag-reducing polymers on turbulence: Effects of Reynolds number, concentration and mixing. Experiments in Fluids, 27(5), 461–472.CrossRefGoogle Scholar
  303. Wei, T., & Willmarth, W. W. (1992). Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows. Journal of Fluid Mechanics, 245, 619–641.CrossRefGoogle Scholar
  304. Wells, C. S. (1969). An analysis of uniform injection of a drag reducing fluid into a turbulent boundary layer. In C. S. Wells (Ed.), Viscous drag reduction (pp. 361–382). New York: Plenum Press.CrossRefGoogle Scholar
  305. White, A. (1966a). Effect of polymer additives on boundary layer separation and drag of submerged bodies. Nature, 211(5056), 1390.CrossRefGoogle Scholar
  306. White, A. (1966b). Turbulent drag reduction with polymer additives. Journal of Mechanical Engineering Science, 8(4), 452–455.CrossRefGoogle Scholar
  307. White, A. (1967a). Flow characteristics of complex soap systems. Nature, 214(5088), 585–586.CrossRefGoogle Scholar
  308. White, A. (1967b). Drag of spheres in dilute high polymer solutions. Nature, 216(5119), 994–995.CrossRefGoogle Scholar
  309. White, A. (1968). Studies of flow characteristics of dilute high polymer solutions. Henderson College of Technology Research Bulletin, (5), 113.Google Scholar
  310. White, A., & Hemmings, J. A. (1976). Drag reduction bt additives: Review and bibliography. Cranfield, UK: BHRA Fluid Engg.Google Scholar
  311. White, C. M., & Mungal, M. G. (2008). Mechanics and prediction of turbulent drag reducation with polymer additives. Annual Review of Fluid Mechanics, 40, 235–256.CrossRefzbMATHGoogle Scholar
  312. Whitsitt, N. F., Harrington, J. J., & Crawford, H. R. (1968). Effect of wall shear stress on drag reduction of viscoelastic fluids. Western Co. Report No. DTMB-3, Contract No. Nonr-4306(00).Google Scholar
  313. Williams, M. C. (1965). Normal stress and viscosity measurements for polymer solutions in steady cone-and-plate shear. AICHE Journal, 11(3), 467–473.CrossRefGoogle Scholar
  314. Wolff, J. H., & Cahn, R. D. (1971). Lifting surfaces in polymer solutions (p. 3653). Bethesda, MD: Naval Ship Research Development Center Report.Google Scholar
  315. Wu, J. (1969). Drag reduction in external flows of additive solutions. In C. S. Wells (Ed.), Viscous drag reduction (pp. 331–350). New York: Plenum Press.CrossRefGoogle Scholar
  316. Wu, J. (1971). Surface containing of polymer solution and pulsative ejection. Nature Physical Sciences, 231(24), 150.CrossRefGoogle Scholar
  317. Wu, J. (1973). Injection of drag-reducing polymers into a turbulent boundary layer. Journal of Hydronautics, 7(3), 129–132.CrossRefGoogle Scholar
  318. Zakin, J. L. (1972). Effects of age and water content on drag reduction in aluminum disoap-hydrocarbon solutions. Nature Physical Sciences, 235(57), 97–98.CrossRefGoogle Scholar
  319. Zakin, J. L., & Chang, J. L. (1972). Nonionic surfactants as drag reducing additives. Nature Physical Sciences, 239(89), 26–29.CrossRefGoogle Scholar
  320. Zakin, J. L., & Chang, J. L. (1974). Polyoxyethylene alcohol non-ionic surfactants as drag reducing additives. In Proc. intern. conf. on drag reduction. Cambridge, UK.Google Scholar
  321. Zakin, J. L., & Hunston, D. L. (1980). Effect of polymer molecular variables on drag reduction. Journal of Macromolecular Science Physics, B18(4), 795–815.CrossRefGoogle Scholar
  322. Zakin, J. L., Lu, B., & Bewersdorff, H. W. (1998). Surfactant drag reduction. Reviews in Chemical Engineering, 14(4–5), 255–320.Google Scholar
  323. Zakin, J. L., Poreh, M., Brosh, A., & Warsharsky, M. (1971). Exploratory study of friction reduction in slurry flows. AICHE Chemical Engineering Progress Symposium Series No. 111, 67, 85–89.Google Scholar
  324. Zandi, I. (1967). Decreased head losses in raw water conduits. Journal of American Water Works Association, 59(2), 213–226.CrossRefGoogle Scholar
  325. Zhu, L., Bai, X., Krushelnycky, E., & Xi, L. (2019). Transient dynamics of turbulence growth and bursting: Effects of drag-reducing polymers. Journal of Non-Newtonian Fluid Mechanics, 266, 127–142.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aroon Shenoy
    • 1
  1. 1.Waterford HillsGermantownUSA

Personalised recommendations