Advertisement

Design of Magnetic-Luminescent Nanoplatforms: Applications in Theranostics and Drug Delivery

  • Navadeep Shrivastava
  • Sarveena
  • Naveed A. Shad
  • Muhammad Munir Sajid
  • Adam Duong
  • S. K. SharmaEmail author
Chapter
  • 42 Downloads
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Recent time has witnessed a progressive growth in the fabrication multifunctional upconversion-magnetic hybrid nanostructured materials due to their important applications. The magnetic-luminescent hybrid nanostructures, which combine luminescent nanoparticles with magnetic nanoentities, exhibit potentials for enhanced bioimaging, controlled drug delivery, and enhanced thermal therapy. Such nanoparticles have potential to have simultaneous systematic use of theranostics and drug delivery and could lead to new opportunities in nanobiomedicines. In the present chapter, we have discussed an important class of magnetic-luminescent nanomaterials for their application in theranostic and drug delivery.

Keywords

Nanoscale functional materials Magnetic up/down conversion Diagnosis and sensing Therapy Drug delivery 

Notes

Acknowledgements

NS acknowledges the Ph.D. thesis, submitted at Federal University of Maranhão, Brazil, under the supervision of Dr. S. K. Sharma.

References

  1. Auzel F (2004) Upconversion and Anti-Stokes processes with f and d ions in solids. Chem Rev 104:139–174.  https://doi.org/10.1021/cr020357gCrossRefGoogle Scholar
  2. Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y (2007) Bifunctional Au–Fe3O4 nanoparticles for protein separation. ACS Nano 1:293–298.  https://doi.org/10.1021/nn700189hCrossRefGoogle Scholar
  3. Barick KC, Sharma A, Shetake NG, Ningthoujam RS, Vatsa RK, Babu PD, Pandey BN, Hassan PA (2015) Covalent bridging of surface functionalized Fe3O4 and YPO4: Eu nanostructures for simultaneous imaging and therapy. Dalt Trans 44:14686–14696.  https://doi.org/10.1039/C5DT01522GCrossRefGoogle Scholar
  4. Blandford R, Yuan Y, Hoshino M, Sironi L (2017) Magnetoluminescence. Space Sci Rev 207:291–317.  https://doi.org/10.1007/s11214-017-0376-2CrossRefGoogle Scholar
  5. Boyer J, Gagnon J, Cuccia LA, Capobianco JA (2007) Synthesis, characterization, and spectroscopy of nanoparticles. Chem Mater 19:3358–3360CrossRefGoogle Scholar
  6. Bridot JL, Faure AC, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084.  https://doi.org/10.1021/ja068356j
  7. Bunzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077.  https://doi.org/10.1039/b406082mCrossRefGoogle Scholar
  8. Camarero J, Perna P, Bollero A, Teran FJ, Miranda R (2016) Role of magnetic anisotropy in magnetic nanostructures: from spintronic to biomedical applications 104:202407Google Scholar
  9. Chander H (2005) Development of nanophosphors—a review. Mater Sci Eng R Rep 49:113–155.  https://doi.org/10.1016/j.mser.2005.06.001CrossRefGoogle Scholar
  10. Chem JM, Chekina N, Hor D, Jendelov P, Horák D, Jendelová P, Trchová M, Beneš MJ, Hrubý M, Herynek V, Turnovcová K, Syková E (2011) Fluorescent magnetic nanoparticles for biomedical applications. J Mater Chem 21:7630.  https://doi.org/10.1039/c1jm10621jCrossRefGoogle Scholar
  11. Chen G, Ohulchanskyy TY, Liu S, Law WC, Wu F, Swihart MT, Ågren H, Prasad PN (2012a) Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 6:2969–2977.  https://doi.org/10.1021/nn2042362CrossRefGoogle Scholar
  12. Chen H, Colvin DC, Qi B, Moore T, He J, Mefford OT, Alexis F, Gore JC, Anker JN (2012b) Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles. J Mater Chem 22:12802–12809.  https://doi.org/10.1039/C2JM15444GCrossRefGoogle Scholar
  13. Chen X, Liu Y, Tu D (2014) Lanthanide-doped luminescent nanomaterials. doi: 10.1007/978-3-642-40364-4Google Scholar
  14. Chen G, Agren H, Ohulchanskyy TY, Prasad PN, Ågren H, Ohulchanskyy Y, Prasad PN, Agren H, Ohulchanskyy TY, Prasad PN (2015) Light upconverting core-shell nanostructures: nanophotonic control for emerging applications. Chem Soc Rev 44:1680–1713.  https://doi.org/10.1039/C4CS00170BCrossRefGoogle Scholar
  15. Choi J, Jun Y, Yeon S-I, Kim HC, Shin J-S, Cheon J (2006) Biocompatible heterostructured nanoparticles for multimodal biological detection. J Am Chem Soc 128:15982–15983.  https://doi.org/10.1021/ja066547gCrossRefGoogle Scholar
  16. Comby S, Surender EM, Kotova O, Truman LK, Molloy JK, Gunnlaugsson T (2014) Lanthanide-functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorg Chem 53:1867–1879.  https://doi.org/10.1021/ic4023568CrossRefGoogle Scholar
  17. Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Ménager C, Gazeau F, Wilhelm C (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35:6400–6411.  https://doi.org/10.1016/j.biomaterials.2014.04.036CrossRefGoogle Scholar
  18. Dong C, Pichaandi J, Regier T, Van Veggel FCJM (2011) Nonstatistical dopant distribution of Ln 3 + -doped NaGdF 4 nanoparticles. J Phys Chem C 115:15950–15958CrossRefGoogle Scholar
  19. Dong H, Du S-RR, Zheng XY, Lyu G-MM, Sun L-DD, Li L-DD, Zhang P-ZZ, Zhang C, Yan C-HH (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115:10725–10815.  https://doi.org/10.1021/acs.chemrev.5b00091CrossRefGoogle Scholar
  20. Du GH, Liu ZL, Lu QH, Xia X, Jia LH, Yao KL, Chu Q, Zhang SM (2006) Fe3O4/CdSe/ZnS magnetic fluorescent bifunctional nanocomposites. Nanotechnology 17:2850–2854.  https://doi.org/10.1088/0957-4484/17/12/004CrossRefGoogle Scholar
  21. Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10:2436–2446.  https://doi.org/10.1021/acsnano.5b07249CrossRefGoogle Scholar
  22. Espinosa A, Kolosnjaj-Tabi J, Abou-Hassan A, Plan Sangnier A, Curcio A, Silva AKA, Di Corato R, Neveu S, Pellegrino T, Liz-Marzán LM, Wilhelm C (2018) Magnetic (Hyper)Thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo, Adv Funct Mater 28:1803660.  https://doi.org/10.1002/adfm.201803660
  23. Fang J, Saunders M, Guo Y, Lu G, Raston CL, Iyer KS (2010) Green light-emitting LaPO4:Ce3+:Tb3+ koosh nanoballs assembled by p-sulfonato-calix[6]arene coated superparamagnetic Fe3O4. Chem Commun 46:3074.  https://doi.org/10.1039/c001098gCrossRefGoogle Scholar
  24. Gai S, Yang P, Li C, Wang W, Dai Y, Niu N, Lin J (2010) Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv Funct Mater 20:1166–1172.  https://doi.org/10.1002/adfm.200902274CrossRefGoogle Scholar
  25. Gao X, O’Donnell M (2017) Method and system for background suppression in magneto-motive photoacoustic imaging of magnetic contrast agents. http://www.google.ch/patents/US8701471. Accessed 5 Nov 2017
  26. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107.  https://doi.org/10.1021/ar9000026CrossRefGoogle Scholar
  27. Ge S, Shi X, Sun K, Li C, Uher C, Baker JR, Banaszak Holl MM, Orr BG (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113:13593–13599.  https://doi.org/10.1021/jp902953t
  28. Ge Y, Zhang Y, He S, Nie F, Teng G, Gu N (2009b) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4:287–295.  https://doi.org/10.1007/s11671-008-9239-9CrossRefGoogle Scholar
  29. Haun TJ, Yoon H, Lee R, Weissleder JB (2010) Magnetic nanoparticle biosensors. Magnetic nanoparticle biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:291–304.  https://doi.org/10.1002/wnan.84
  30. He H, Xie MY, Ding Y, Yu XF (2009) Synthesis of Fe3O4@LaF3:Ce, Tb nanocomposites with bright fluorescence and strong magnetism. Appl Surf Sci 255:4623–4626.  https://doi.org/10.1016/j.apsusc.2008.11.086CrossRefGoogle Scholar
  31. Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science 346:1247390.  https://doi.org/10.1126/science.1247390CrossRefGoogle Scholar
  32. Jie G, Yuan J (2012) Novel magnetic Fe 3O 4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Anal Chem 84:2811–2817.  https://doi.org/10.1021/ac203261xCrossRefGoogle Scholar
  33. Joseph LK, Dayas KR, Damodar S, Krishnan B, Krishnankutty K, Nampoori VPN, Radhakrishnan P (2008) Photoluminescence studies on rare earth titanates prepared by self-propagating high temperature synthesis method. Spectrochim Acta—Part A Mol Biomol Spectrosc 71:1281–1285.  https://doi.org/10.1016/j.saa.2008.03.030
  34. Kaewsaneha C, Tangboriboonrat P, Polpanich D, Elaissari A (2015) Multifunctional fluorescent-magnetic polymeric colloidal particles: preparations and bioanalytical applications. ACS Appl Mater Interfaces 7:23373–23386.  https://doi.org/10.1021/acsami.5b07515CrossRefGoogle Scholar
  35. Kas R, Sevinc E, Topal U, Acar HY (2010) A universal method for the preparation of magnetic and luminescent hybrid nanoparticles. J Phys Chem C 114:7758–7766.  https://doi.org/10.1021/jp100312eCrossRefGoogle Scholar
  36. Kell AJ, Barnes ML, Jakubek ZJ, Simard B (2011) Toward brighter hybrid magnetic-luminescent nanoparticles: luminosity dependence on the excited state properties of embedded dyes. J Phys Chem C 115:18412–18421.  https://doi.org/10.1021/jp203239zCrossRefGoogle Scholar
  37. Khan LU, Khan ZU (2017) Bifunctional nanomaterials: magnetism, luminescence and multimodal biomedical applications. In: Complex magnetic nanostructures. Springer International Publishing, Cham, pp 121–171.  https://doi.org/10.1007/978-3-319-52087-2_4
  38. Khan LU, Brito HF, Holsa J, Pirota KR, Muraca D, Felinto MCFC, Teotonio EES, Malta OL (2014) Red-green emitting and superparamagnetic nanomarkers containing Fe3O4 functionalized with calixarene and rare earth complexes. Inorg Chem 53:12902–12910.  https://doi.org/10.1021/ic5018856CrossRefGoogle Scholar
  39. Kharissova OV, Kharisov BI, Jiménez-Pérez VM, Muñoz Flores B, Ortiz Méndez U (2013) Ultrasmall particles and nanocomposites: state of the art. RSC Adv 3:22648.  https://doi.org/10.1039/c3ra43418d
  40. Kolosnjaj-tabi J, Espinosa A, Cle O, Di Corato R, Wilhelm C, Silva AKA, Me C, Corato DI, Al ET (2015) Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes 2904–2916.  https://doi.org/10.1021/nn506949t
  41. Kuo CT, Peng HS, Rong Y, Yu J, Sun W, Fujimoto B, Chiu DT (2017) Optically encoded semiconducting polymer dots with single-wavelength excitation for barcoding and tracking of single cells. Anal Chem 89:6232–6238.  https://doi.org/10.1021/acs.analchem.7b01214CrossRefGoogle Scholar
  42. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications (vol 108, pg 2064), Chem Rev 108:2064–2110. doi: 10.1021/Cr900197gGoogle Scholar
  43. Li L, Chen D, Zhang Y, Deng Z, Ren X, Meng X, Tang F, Ren J, Zhang L (2007) Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system. Nanotechnology 18.  https://doi.org/10.1088/0957-4484/18/40/405102
  44. Li X, Zhao D, Zhang F (2013) Multifunctional upconversion-magnetic hybrid nanostructured materials: synthesis and bioapplications. Theranostics 3:292–305.  https://doi.org/10.7150/thno.5289CrossRefGoogle Scholar
  45. Li J, Arnal B, Wei C-W, Shang J, Nguyen T-M, O’Donnell M, Gao X (2015) Magneto-optical nanoparticles for cyclic magnetomotive photoacoustic imaging. ACS Nano 9:1964–1976.  https://doi.org/10.1021/nn5069258CrossRefGoogle Scholar
  46. Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48:1276–1285.  https://doi.org/10.1021/acs.accounts.5b00038CrossRefGoogle Scholar
  47. Liu Y, Wang D, Shi J, Peng Q, Li Y (2013a) Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew Chemie—Int Ed 52:4366–4369.  https://doi.org/10.1002/anie.201209884CrossRefGoogle Scholar
  48. Liu C, Gao Z, Zeng J, Hou Y, Fang F, Li Y, Qiao R, Shen L, Lei H, Yang W, Gao M (2013b) Magnetic/upconversion fluorescent dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano 7:7227–7240.  https://doi.org/10.1021/nn4030898CrossRefGoogle Scholar
  49. Liz-Marzán LM, Kamat PV (2003) Nanoscale materials. In: Nanoscale materials. Kluwer Academic Publishers, Boston, pp 1–3.  https://doi.org/10.1007/0-306-48108-1_1
  50. Mazuel F, Espinosa A, Radtke G, Bugnet M, Neveu S, Lalatonne Y, Botton GA, Abou-hassan A, Wilhelm C (2017) Magneto-thermal metrics can mirror the long-term intracellular fate of magneto-plasmonic nanohybrids and reveal the remarkable shielding effect of gold, 201605997 (2017).  https://doi.org/10.1002/adfm.201605997
  51. Mi C, Gao H, Li F, Xu S (2012) Colloids and surfaces a : physicochemical and engineering aspects synthesis of surface amino-functionalized NaGdF4: Ce, Tb nanoparticles and their luminescence resonance energy transfer (LRET) with Au nanoparticles. Colloids Surf A Physicochem Eng Asp 395:152–156.  https://doi.org/10.1016/j.colsurfa.2011.12.022CrossRefGoogle Scholar
  52. Mikhaylova M, Kim DKDK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M, Tetal T, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20:2472–2477. http://www.ncbi.nlm.nih.gov/pubmed/15835712. Accessed 3 Dec 2017
  53. Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS (2014) Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces. Acc Chem Res 47:3481–3493.  https://doi.org/10.1021/ar500253gCrossRefGoogle Scholar
  54. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610.  https://doi.org/10.1146/annurev.matsci.30.1.545CrossRefGoogle Scholar
  55. Natarajan Prakash RK , Dheivasigamani Thangaraju YS, Mukannan Arivanandhan YH (2016) UV-visible and near-infrared active NaGdF4:Yb:Er/Ag/TiO2 nanocomposite for enhanced photocatalytic applications. RSC Adv 6:26770–26775.  https://doi.org/10.1039/c7ra03380j
  56. Nguyen T-D, Tran T-H (2014) Multicomponent nanoarchitectures for the design of optical sensing and diagnostic tools. RSC Adv 4:916–942.  https://doi.org/10.1039/c3ra44056gCrossRefGoogle Scholar
  57. Ortgies DH, Teran FJ, Rocha U, de la Cueva L, Salas G, Cabrera D, Vanetsev AS, Rähn M, Sammelselg V, Orlovskii YV, Jaque D, De Cueva L, Salas G, Cabrera D, Vanetsev AS, Rähn M, Sammelselg V, Orlovskii YV, Jaque D (2018) Optomagnetic nanoplatforms for in situ controlled hyperthermia. Adv Funct Mater 1704434:1704434.  https://doi.org/10.1002/adfm.201704434CrossRefGoogle Scholar
  58. Peng H, Liu G, Dong X, Wang J, Xu J, Yu W (2011) Preparation and characteristics of Fe3O4@YVO4:Eu3+ bifunctional magnetic–luminescent nanocomposites. J. Alloys Compd 509:6930–6934.  https://doi.org/10.1016/j.jallcom.2011.04.004CrossRefGoogle Scholar
  59. Peng D, Ju Q, Chen X, Ma R, Chen B, Bai G, Hao J, Qiao X, Fan X, Wang F (2015) Lanthanide-doped energy cascade nanoparticles: full spectrum emission by single wavelength excitation. Chem Mater 27:3115–3120.  https://doi.org/10.1021/acs.chemmater.5b00775CrossRefGoogle Scholar
  60. Prasad PN (2004) Nanophotonics. Wiley, New YorkGoogle Scholar
  61. Rao CNR, Ramakrishna Matte HSS, Voggu R, Govindaraj A (2012) Recent progress in the synthesis of inorganic nanoparticles. Dalt Trans 41:5089–5120.  https://doi.org/10.1039/c2dt12266a
  62. Ren J, Jia G, Guo Y, Wang A, Xu S (2016) Unraveling morphology and phase control of NaLnF4 upconverting nanocrystals. J Phys Chem C 120:1342–1351.  https://doi.org/10.1021/acs.jpcc.5b11048CrossRefGoogle Scholar
  63. Sankar K, Plumley JB, Akins Ba, Memon Ta, Withers NJ, Smolyakov Ga, Osinski M, Osi M (2009) Synthesis and characterization of scintillating cerium-doped lanthanum fluoride nanocrystals 7189:718909.  https://doi.org/10.1117/12.816894
  64. Sarveena, Shrivastava N, Singh M, Sharma SK (2017) Multifunctional magnetic nanostructures: exchange bias model and applications. In: Complex magnetic nanostructures. Springer International Publishing, Cham, pp 225–280.  https://doi.org/10.1007/978-3-319-52087-2_7
  65. Schneider L, Rinkel T, Voß B, Chrobak A, Klare JP, Neethling J, Olivier J, Schaniel D, Bendeif E, Bondino F, Magnano E, Balinski K (2016) Characterization of multifunctional β-NaEuF4/NaGdF4 core–shell nanoparticles with narrow size distribution. Nanoscale 8:2832–2843.  https://doi.org/10.1039/c5nr06915gCrossRefGoogle Scholar
  66. Sharma SK (2017) Complex magnetic nanostructures: synthesis, assembly and applications. Springer International Publishing, ChamCrossRefGoogle Scholar
  67. Shen J, Sun L-D, Zhang Y-W, Yan C-H (2010) Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb, Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem Commun 46:5731.  https://doi.org/10.1039/c0cc00814aCrossRefGoogle Scholar
  68. Shrivastava N, Khan LU, Vargas JM, Ospina C, Coaquira JAQ, Zoppellaro G, Brito HF, Javed Y, Shukla DK, Felinto MCFC, Sharma SK (2017a) Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: energy conversion and magnetic behavior. Phys Chem Chem Phys 19:18660–18670.  https://doi.org/10.1039/C7CP02235BCrossRefGoogle Scholar
  69. Shrivastava N, Khan LU, Khan ZU, Vargas JM, Moscoso-Londoño O, Ospina C, Brito HF, Javed Y, Felinto MCFC, Menezes AS, Knobel M, Sharma SK, de Menezes AS, Knobel M, Sharma SK (2017b) Building block magneto-luminescent nanomaterials of iron-oxide/ZnS@LaF3:Ce3+, Gd3+, Tb3+ with green emission. J Mater Chem C 5:2282–2290.  https://doi.org/10.1039/C6TC05053KCrossRefGoogle Scholar
  70. Shrivastava N, Rocha U, Muraca D, Silva W, Jacinto C, Kumar R, Sharma SK (2018a) Insight into dual-modality of triply doped magnetic-luminescent iron-oxide/NaGdF4:RE3+(RE = Ce, Tb, Dy) nanoparticles. Mater Lett 213:358–361.  https://doi.org/10.1016/j.matlet.2017.11.037CrossRefGoogle Scholar
  71. Shrivastava N, Rocha U, Muraca D, Jacinto C, Moreno S, Vargas JM, Sharma SK (2018b) Magnetic upconverting fluorescent NaGdF4:Ln3+ and iron-oxide@NaGdF4:Ln3+ nanoparticles. AIP Adv 8:056710.  https://doi.org/10.1063/1.5007748CrossRefGoogle Scholar
  72. Singh RK, Patel KD, Kim J-J, Kim T-H, Kim J-H, Shin US, Lee E-J, Knowles JC, Kim H-W (2014) Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. ACS Appl Mater Interfaces 6:2201–2208.  https://doi.org/10.1021/am4056936CrossRefGoogle Scholar
  73. Srinivasan M, Rajabi M, Mousa SA (2015) Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomaterials (Basel, Switzerland) 5:1690–1703.  https://doi.org/10.3390/nano5041690
  74. Su C (2017) Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J Hazard Mater 322.  https://doi.org/10.1016/j.jhazmat.2016.06.060
  75. Sudheendra L, Das GK, Li C, Stark D, Cena J, Cherry S, Kennedy IM (2014) NaGdF 4 :Eu 3+ nanoparticles for enhanced X-ray excited optical imagingGoogle Scholar
  76. Sun L, Qiu Y, Liu T, Peng H, Deng W, Wang Z, Shi L (2013) Visible-light sensitized sol-gel-based lanthanide complexes (Sm, Yb, Nd, Er, Pr, Ho, Tm): microstructure, photoluminescence study, and thermostability. RSC Adv 3:26367–26375.  https://doi.org/10.1039/c3ra45202fCrossRefGoogle Scholar
  77. Sun L, Wang Z, Zhang JZ, Feng J, Liu J, Zhao Y, Shi L (2014) Visible and near-infrared luminescent mesoporous titania microspheres functionalized with lanthanide complexes: microstructure and luminescence with visible excitation. RSC Adv 4:28481–28489.  https://doi.org/10.1039/c4ra03781bCrossRefGoogle Scholar
  78. van Wijngaarden A, Scheidelaar JT, Vlugt S, Reid TJH, Meijerink MF, Vlugt TJH, Reid MF, Meijerink A (2010) Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple. Published for the American Physical Society by the American Institute of Physics. https://dspace.library.uu.nl/handle/1874/202777. Accessed 4 Dec 2017
  79. Wang D, He J, Rosenzweig N, Rosenzweig Z (2004) Superparamagnetic Fe2O3 beads−CdSe/ZnS quantum dots core−shell nanocomposite particles for cell separation. Nano Lett 4:409–413.  https://doi.org/10.1021/nl035010nCrossRefGoogle Scholar
  80. Wang G, Peng Q, Li Y (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res 44:322–332.  https://doi.org/10.1021/ar100129pCrossRefGoogle Scholar
  81. Wang F, Deng R, Liu X (2014) Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat Protoc 9:1634–1644.  https://doi.org/10.1038/nprot.2014.111CrossRefGoogle Scholar
  82. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415.  https://doi.org/10.1007/s11671-008-9174-9CrossRefGoogle Scholar
  83. Wu T, Pan H, Chen R, Luo D, Zhang H, Shen Y, Li Y, Wang L (2016) Effect of solution pH value changes on fluorescence intensity of magnetic-luminescent Fe3O4@Gd2O3:Eu3+ nanoparticles. J Rare Earths 34:71–76.  https://doi.org/10.1016/S1002-0721(14)60581-0CrossRefGoogle Scholar
  84. Xia A, Gao Y, Zhou J, Li C, Yang T, Wu D, Wu L, Li F (2011) Core-shell NaYF4:Yb3+, Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32:7200–7208.  https://doi.org/10.1016/j.biomaterials.2011.05.094CrossRefGoogle Scholar
  85. Yadav R, Singh SK, Verma RK, Rai SB (2014) Observation of multi-mode: Upconversion, downshifting and quantum-cutting emission in Tm3+/Yb3+ co-doped Y2O3 phosphor. Chem Phys Lett 599:122–126.  https://doi.org/10.1016/J.CPLETT.2014.03.025CrossRefGoogle Scholar
  86. Yang C-T, Chuang K-H (2012) Gd(iii) chelates for MRI contrast agents: from high relaxivity to “smart”, from blood pool to blood–brain barrier permeable, Medchemcomm 3.  https://doi.org/10.1039/c2md00279e
  87. Yi G, Chow G-M (2007) Water-soluble NaYF4:Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19:341–343.  https://doi.org/10.1021/cm062447yCrossRefGoogle Scholar
  88. Yu S-Y, Zhang H-J, Yu J-B, Wang C, Sun L-N, Shi W-D (2007) Bifunctional magnetic−optical nanocomposites: grafting lanthanide complex onto core−shell magnetic silica nanoarchitecture. Langmuir 23:7836–7840.  https://doi.org/10.1021/la700735mCrossRefGoogle Scholar
  89. Yu X, Wan J, Shan Y, Chen K, Han X (2009) A facile approach to fabrication of bifunctional magnetic-optical Fe3O4@ZnS microspheres. Chem Mater 21:4892–4898.  https://doi.org/10.1021/cm902667bCrossRefGoogle Scholar
  90. Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky GD (2012) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12:61–67.  https://doi.org/10.1021/nl202949yCrossRefGoogle Scholar
  91. Zhang L, Dong W-F, Sun H-B (2013) Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5:7664–7684.  https://doi.org/10.1039/c3nr01616aCrossRefGoogle Scholar
  92. Zhang Y, Xiao Q, He H, Zhang J, Dong G, Han J, Qiu J (2015) Simultaneous luminescence modulation and magnetic field detection via magneto-optical response of Eu3+-doped NaGdF4 nanocrystals. J Mater Chem C 3:10140–10145.  https://doi.org/10.1039/C5TC02364ECrossRefGoogle Scholar
  93. Zhong C, Yang P, Li X, Li C, Wang D, Gai S, Lin J (2012) Monodisperse bifunctional Fe3O4@NaGdF4:Yb/Er@NaGdF4:Yb/Er core–shell nanoparticles. RSC Adv 2:3194.  https://doi.org/10.1039/c2ra20070hCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Navadeep Shrivastava
    • 1
  • Sarveena
    • 2
  • Naveed A. Shad
    • 3
  • Muhammad Munir Sajid
    • 3
  • Adam Duong
    • 1
  • S. K. Sharma
    • 4
    Email author
  1. 1.Département de chimie, biochimie et physiqueUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.Alakh Prakash Goyal Shimla UniversityShimlaIndia
  3. 3.Department of PhysicsGovernment College University FaisalabadFaisalabadPakistan
  4. 4.Department of Physics, Faculty of Science & TechnologyThe University of the West IndiesSaint AugustineTrinidad and Tobago

Personalised recommendations