Advertisement

Target Delivery of Iron Oxide Magnetic Nanoparticles for Imaging and Treatment

  • Hamed Nosrati
  • Marziyeh Salehiabar
  • Naser Sefidi
  • Siamak Javani
  • Soodabeh Davaran
  • Hossein DanafarEmail author
Chapter
  • 38 Downloads
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

At this time, passive targeting with the aid of enhanced permeability and retention (EPR effect), active targeting with the aid of molecular or other targeting agents, and employing external magnetic field are used to successfully deliver IONPs to aim tumor site. Latest progresses in treatment of disease are toward targeted delivery. With fast progresses in this field, researchers employed the IONPs as a hopeful theranostic vehicle. In this chapter, we focused on passive and active target delivery of IONPs for diagnosis, imaging, and therapy purpose.

Keywords

Iron oxide Magnetic nanoparticle Magnetic targeting Target delivery Theranostic 

References

  1. Abdalla MO, Karna P, Sajja HK, Mao H, Yates C, Turner T, Aneja R (2011) Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy. J Controlled Release 149(3):314–322CrossRefGoogle Scholar
  2. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437CrossRefGoogle Scholar
  3. Assaraf YG, Leamon CP, Reddy JA (2014) The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updates 17(4):89–95CrossRefGoogle Scholar
  4. Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T (2012) Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6(6):5266–5273CrossRefGoogle Scholar
  5. Basu S, Alavi A (2009) Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care. Nucl Med Rev Cent East Eur 12(1):1–13Google Scholar
  6. Bhattacharya D, Das M, Mishra D, Banerjee I, Sahu SK, Maiti TK, Pramanik P (2011) Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultra dispersed nanoconjugates for bimodal imaging. Nanoscale 3(4):1653–1662CrossRefGoogle Scholar
  7. Bohara RA, Thorat ND, Pawar SH (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 6(50):43989–44012CrossRefGoogle Scholar
  8. Boncel S, Herman AP, Budniok S, Jędrysiak RG, Jakóbik-Kolon A, Skepper JN, Müller KH (2016) In vitro targeting and selective killing of T47D breast cancer cells by purpurin and 5-Fluorouracil anchored to magnetic CNTs: nitrene-based functionalization versus uptake, cytotoxicity, and intracellular fate. ACS Biomater Sci Eng 2(8):1273–1285CrossRefGoogle Scholar
  9. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M, Miyazono K, Uesaka M (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815–823CrossRefGoogle Scholar
  10. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95CrossRefGoogle Scholar
  11. Campbell RB, Fukumura D, Brown EB, Mazzola LM, Izumi Y, Jain RK, Torchilin VP, Munn LL (2002) Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Can Res 62(23):6831–6836Google Scholar
  12. Chen H, Gu Y, Hu Y, Qian Z (2007) Characterization of pH-and temperature-sensitive hydrogel nanoparticles for controlled drug release. PDA J Pharm Sci Technol 61(4):303–313Google Scholar
  13. Chen H, Wang L, Yu Q, Qian W, Tiwari D, Yi H, Wang AY, Huang J, Yang L, Mao H (2013) Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer. Int J Nanomed 8:3781Google Scholar
  14. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170CrossRefGoogle Scholar
  15. Clauson RM, Chen M, Scheetz LM, Berg B, Chertok B (2018) Size-controlled iron oxide nanoplatforms with lipidoid-stabilized shells for efficient magnetic resonance imaging-trackable lymph node targeting and high-capacity biomolecule display. ACS Appl Mater Interfaces 10(24):20281–20295CrossRefGoogle Scholar
  16. Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC (2011a) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32(8):2183–2193CrossRefGoogle Scholar
  17. Cole AJ, David AE, Wang J, Galbán CJ, Yang VC (2011b) Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials 32(26):6291–6301CrossRefGoogle Scholar
  18. Dahms N, Lobel P, Kornfeld S (1989) Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 264(21):12115–12118Google Scholar
  19. Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML (2006) The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 121(2):144–158CrossRefGoogle Scholar
  20. D’souza AA, Devarajan PV (2015) Asialoglycoprotein receptor mediated hepatocyte targeting—strategies and applications. J Controlled Release 203:126–139Google Scholar
  21. Fan C, Gao W, Chen Z, Fan H, Li M, Deng F, Chen Z (2011) Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int J Pharm 404(1):180–190CrossRefGoogle Scholar
  22. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151CrossRefGoogle Scholar
  23. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186CrossRefGoogle Scholar
  24. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976CrossRefGoogle Scholar
  25. Garanger E, Boturyn D, Dumy P (2007) Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem-Anti-Cancer Agents) 7(5):552–558Google Scholar
  26. Göppert TM, Müller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13(3):179–187CrossRefGoogle Scholar
  27. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci 105(7):2586–2591CrossRefGoogle Scholar
  28. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6(4):3080–3091CrossRefGoogle Scholar
  29. Gusev S, Povaliĭ T, Volobueva T, Zakharchenko V (1988) The distribution of negative charges on the luminal surface of Descemet’s endothelium. Tsitologiia 30(8):1022–1026Google Scholar
  30. Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H (2010) EGFRvIII antibody–conjugated iron oxide nanoparticles for magnetic resonance imaging–guided convection-enhanced delivery and targeted therapy of glioblastoma. Can Res 70(15):6303–6312CrossRefGoogle Scholar
  31. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380CrossRefGoogle Scholar
  32. Hayashi K, Sato Y, Sakamoto W, Yogo T (2016) Theranostic nanoparticles for MRI-guided thermochemotherapy: “tight” clustering of magnetic nanoparticles boosts relativity and heat-generation power. ACS Biomater Sci Eng 3(1):95–105CrossRefGoogle Scholar
  33. Hillery AM, Lloyd AW, Swarbrick J (2002) Drug delivery and targeting: for pharmacists and pharmaceutical scientists. CRC PressGoogle Scholar
  34. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci 95(8):4607–4612CrossRefGoogle Scholar
  35. Hu Y, Li J, Yang J, Wei P, Luo Y, Ding L, Sun W, Zhang G, Shi X, Shen M (2015) Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors. Biomater Sci 3(5):721–732CrossRefGoogle Scholar
  36. Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L, Yang L, Mao H (2016) Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image‐guided approaches. Adv Funct MaterGoogle Scholar
  37. Islam T, Josephson L (2009) Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark 5(2):99–107CrossRefGoogle Scholar
  38. Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17):812–818CrossRefGoogle Scholar
  39. Jae-Hyun L, Yong-Min H, Young-wook J, Seo J-W, Jang J-T, Ho-Taek S, Sungjun K, Eun-Jin C, Yoon H-G, Suh J-S (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95CrossRefGoogle Scholar
  40. Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40CrossRefGoogle Scholar
  41. Jalalian SH, Taghdisi SM, Hamedani NS, Kalat SAM, Lavaee P, ZandKarimi M, Ghows N, Jaafari MR, Naghibi S, Danesh NM (2013) Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci 50(2):191–197CrossRefGoogle Scholar
  42. Kandasamy G, Maity D (2015) Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 496(2):191–218CrossRefGoogle Scholar
  43. Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696CrossRefGoogle Scholar
  44. Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19):8858–8864CrossRefGoogle Scholar
  45. Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M (2006) Methotrexate-immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792CrossRefGoogle Scholar
  46. Konno T, Maeda H, Iwai K, Maki S, Tashiro S, Uchida M, Miyauchi Y (1984) Selective targeting of anti-cancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast medium. Cancer 54(11):2367–2374CrossRefGoogle Scholar
  47. Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A, Miladi I, Billotey C, Pourroy G, Begin-Colin S (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32(33):8562–8573CrossRefGoogle Scholar
  48. Le Droumaguet B, Nicolas J, Brambilla D, Mura S, Maksimenko A, De Kimpe L, Salvati E, Zona C, Airoldi C, Canovi M (2012) Versatile and efficient targeting using a single nanoparticulate platform: application to cancer and Alzheimer’s disease. ACS Nano 6(7):5866–5879CrossRefGoogle Scholar
  49. Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L (2013) Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 7(3):2078–2089CrossRefGoogle Scholar
  50. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115(19):10637–10689CrossRefGoogle Scholar
  51. Li Z, Yin S, Cheng L, Yang K, Li Y, Liu Z (2014) Magnetic targeting enhanced theranostic strategy based on multimodal imaging for selective ablation of cancer. Adv Func Mater 24(16):2312–2321CrossRefGoogle Scholar
  52. Li Z, Xu F, Li Q, Liu S, Wang H, Möhwald H, Cui X (2015) Synthesis of multifunctional bovine serum albumin microcapsules by the sonochemical method for targeted drug delivery and controlled drug release. Colloids Surf, B 136:470–478CrossRefGoogle Scholar
  53. Liang H, Li X, Chen B, Wang B, Zhao Y, Zhuang Y, Shen H, Zhang Z, Dai J (2015) A collagen-binding EGFR single-chain Fv antibody fragment for the targeted cancer therapy. J Controlled Release 209:101–109CrossRefGoogle Scholar
  54. Liao C, Sun Q, Liang B, Shen J, Shuai X (2011) Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80(3):699–705Google Scholar
  55. Liu D, Wu W, Ling J, Wen S, Gu N, Zhang X (2011) Effective PEGylation of iron oxide nanoparticles for high performance in vivo cancer imaging. Adv Func Mater 21(8):1498–1504CrossRefGoogle Scholar
  56. Low PS, Henne WA, Doorneweerd DD (2007) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129CrossRefGoogle Scholar
  57. Lu Y, Low PS (2012) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 64:342–352CrossRefGoogle Scholar
  58. Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Can Res 56(20):4694–4701Google Scholar
  59. Lundin J, Kimby E, Björkholm M, Broliden P-A, Celsing F, Hjalmar V, Möllgård L, Rebello P, Hale G, Waldmann H (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100(3):768–773CrossRefGoogle Scholar
  60. Luo Y, Yang J, Yan Y, Li J, Shen M, Zhang G, Mignani S, Shi X (2015) RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T 1-weighted MR imaging of gliomas. Nanoscale 7(34):14538–14546CrossRefGoogle Scholar
  61. Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21(5):797–802CrossRefGoogle Scholar
  62. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79CrossRefGoogle Scholar
  63. Manish G, Vimukta S (2011) Targeted drug delivery system: a review. Res J Chem Sci 1(2):135–138Google Scholar
  64. Manjili HK, Ma’mani L, Tavaddod S, Mashhadikhan M, Shafiee A, Naderi-Manesh H (2016) D, L-Sulforaphane loaded Fe 3 O 4@ gold core shell nanoparticles: a potential sulforaphane delivery system. PloS one 11(3):e0151344Google Scholar
  65. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392Google Scholar
  66. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251CrossRefGoogle Scholar
  67. Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19(56):6550CrossRefGoogle Scholar
  68. Ni D, Ferreira CA, Barnhart TE, Quach V, Yu B, Jiang D, Wei W, Liu H, Engle JW, Hu P (2018) Magnetic targeting of nanotheranostics enhances cerenkov radiation-induced photodynamic therapy. J Am Chem Soc 140(44):14971–14979CrossRefGoogle Scholar
  69. Nosrati H, Mojtahedi A, Danafar H, Kheiri Manjili H (2018) Enzymatic stimuli‐responsive methotrexate‐conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J Biomed Mater Res Part A 106(6):1646–1654Google Scholar
  70. Nosrati H, Tarantash M, Bochani S, Charmi J, Bagheri Z, Fridoni M, Abdollahifar M-A, Davaran S, Danafar H, Kheiri Manjili H (2019) Glutathione (GSH) peptide conjugated magnetic nanoparticles as blood–brain barrier shuttle for mri-monitored brain delivery of paclitaxel. ACS Biomater Sci EngGoogle Scholar
  71. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRefGoogle Scholar
  72. Peng X-H, Qian X, Mao H, Wang AY, Chen Z, Nie S, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 3(3):311–321Google Scholar
  73. Ross JS, Fletcher JA, Bloom KJ, Linette GP, Stec J, Symmans WF, Pusztai L, Hortobagyi GN (2004) Targeted therapy in breast cancer the HER-2/neu gene and protein. Mol Cell Proteomics 3(4):379–398CrossRefGoogle Scholar
  74. Sakulkhu U, Mahmoudi M, Maurizi L, Coullerez G, Hofmann-Amtenbrink M, Vries M, Motazacker M, Rezaee F, Hofmann H (2015) Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Biomater Sci 3(2):265–278CrossRefGoogle Scholar
  75. Schottelius M, Laufer B, Kessler H, Wester H-Jr (2009) Ligands for mapping αvβ3-integrin expression in vivo. Acc Chem Res 42(7):969–980Google Scholar
  76. Seymour L, Ulbrich K, Wedge S, Hume I, Strohalm J, Duncan R (1991) N-(2-hydroxypropyl) methacrylamide copolymers targeted to the hepatocyte galactose-receptor: pharmacokinetics in DBA2 mice. Br J Cancer 63(6):859CrossRefGoogle Scholar
  77. Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, Doran J, Young AM, Burtles S, Kerr DJ (2002) Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol 20(6):1668–1676CrossRefGoogle Scholar
  78. Shojaei S, Ghasemi Z, Shahrisa A (2017) Cu (I)@ Fe3O4 nanoparticles supported on imidazolium‐based ionic liquid‐grafted cellulose: green and efficient nanocatalyst for multicomponent synthesis of N‐sulfonylamidines and N‐sulfonylacrylamidines. Appl Organomet ChemGoogle Scholar
  79. Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11(1):23–36CrossRefGoogle Scholar
  80. Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 16(5):1181–1188CrossRefGoogle Scholar
  81. Subbiah V, Brown RE, McGuire MF, Buryanek J, Janku F, Younes A, Hong D (2014) A novel immunomodulatory and molecularly targeted strategy for refractory Hodgkin’s lymphoma. Oncotarget 5(1):95CrossRefGoogle Scholar
  82. Sun C, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res, Part A 78(3):550–557CrossRefGoogle Scholar
  83. Suresh T, Lee LX, Joshi J, Barta SK (2014) New antibody approaches to lymphoma therapy. J Hematol Oncol 7(1):58CrossRefGoogle Scholar
  84. Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Controlled Release 146(3):264–275CrossRefGoogle Scholar
  85. Von Maltzahn G, Park J-H, Lin KY, Singh N, Schwöppe C, Mesters R, Berdel WE, Ruoslahti E, Sailor MJ, Bhatia SN (2011) Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 10(7):545–552CrossRefGoogle Scholar
  86. Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima MJ, Langer R (2008) Superparamagnetic iron oxide nanoparticle–aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315CrossRefGoogle Scholar
  87. Wang Y, Su P, Wang S, Wu J, Huang J, Yang Y (2013) Dendrimer modified magnetic nanoparticles for immobilized BSA: a novel chiral magnetic nano-selector for direct separation of racemates. J Mater Chem B 1(38):5028–5035CrossRefGoogle Scholar
  88. Wang L, An Y, Yuan C, Zhang H, Liang C, Ding F, Gao Q, Zhang D (2015) GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells. Int J Nanomed 10:2507CrossRefGoogle Scholar
  89. Widder KJ, Senyei AE, Scarpelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Exp Biol Med 158(2):141–146CrossRefGoogle Scholar
  90. Widder KJ, Senyei AE, Ranney DF (1979) Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharmacol 16:213–271CrossRefGoogle Scholar
  91. Wu Y, Soesbe TC, Kiefer GE, Zhao P, Sherry AD (2010) A responsive europium (III) chelate that provides a direct readout of pH by MRI. J Am Chem Soc 132(40):14002–14003CrossRefGoogle Scholar
  92. Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166CrossRefGoogle Scholar
  93. Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, Xu H, Jiang T, Wood WC, Nie S (2008) Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol 4(4):439–449CrossRefGoogle Scholar
  94. Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X, Duan H, Ni C, Yuan Q, Adams G (2009a) Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5(2):235–243CrossRefGoogle Scholar
  95. Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X, Sajja HK, Wang L, Duan H, Ni C (2009) Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 136(5):1514–1525Google Scholar
  96. Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang Y, Nickles RJ (2011) cRGD-functionalized, DOX-conjugated, and 64 Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17):4151–4160CrossRefGoogle Scholar
  97. YoungáKim W, SeungáKim J (2015) Biotin-guided anticancer drug delivery with acidity-triggered drug release. Chem Commun 51(45):9343–9345CrossRefGoogle Scholar
  98. Zhang F, Huang X, Zhu L, Guo N, Niu G, Swierczewska M, Lee S, Xu H, Wang AY, Mohamedali KA (2012) Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials 33(21):5414–5422CrossRefGoogle Scholar
  99. Zhao X, Li H, Lee RJ (2008) Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 5(3):309–319CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hamed Nosrati
    • 1
  • Marziyeh Salehiabar
    • 2
  • Naser Sefidi
    • 1
  • Siamak Javani
    • 3
  • Soodabeh Davaran
    • 2
  • Hossein Danafar
    • 1
    • 4
    Email author
  1. 1.Department of Pharmaceutical Biomaterials, School of PharmacyZanjan University of Medical SciencesZanjanIran
  2. 2.Drug Applied Research Center, Tabriz University of Medical SciencesTabrizIran
  3. 3.Medical Cellular and Molecular Research Center, Golestan University of Medical SciencesGorganIran
  4. 4.Zanjan Pharmaceutical Nanotechnology Research CenterZanjan University of Medical SciencesZanjanIran

Personalised recommendations