Magnetic Nano- and Microparticles in Life Sciences and Medical Imaging

  • Daniel HorákEmail author
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


The rapidly growing interest in biology and medicine is due to ongoing progress in noninvasive in vitro or in vivo diagnosis and imaging or treatment of various diseases, including monitoring of the survival, migration, and fate of transplanted cells over the long-term. This requires the use of contrast agents, drug delivery vehicles, and separation media often based on magnetic nanoparticles and/or microspheres. This chapter is going to describe approaches to their development at the Institute of Macromolecular Chemistry in Prague, the Czech Republic, during the last twenty-five years.


Magnetic Nanoparticles Microparticles Surface modification Biomedical applications 



I would like to thank all my colleagues and co-authors who have helped in carrying out the research and the Institute of Macromolecular Chemistry and the Czech Science Foundation (No. 20-02177J) for support. Special thanks belong to Dr. V. Patsula for drawing some pictures.


  1. Amiri S, Shokrollahi H (2013) The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng C 33:1–8CrossRefGoogle Scholar
  2. Arruebo M, Fernández-Pacheco R, Velasco B, Marquina C, Arbiol J, Irusta S, Ibarra MR, Santamaría J (2007) Antibody-functionalized hybrid superparamagnetic nanoparticles. Adv Funct Mater 17:1473–1479CrossRefGoogle Scholar
  3. Babič M, Horák D, Trchová M, Jendelová P, Glogarová K, Lesný P, Herynek V, Hájek M, Syková E (2008) Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 19:740–750CrossRefGoogle Scholar
  4. Babič M, Horák D, Jendelová P, Glogarová K, Herynek V, Trchová M, Likavčanová K, Hájek M, Syková E (2009) Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjug Chem 20:283–294Google Scholar
  5. Babič M, Horák D, Jendelová P, Herynek V, Proks V, Vaněček V, Syková E (2012) The use of dopamine-hyaluronate associate-coated maghemite nanoparticles to label cells. Int J Nanomed 7:1461–1474CrossRefGoogle Scholar
  6. Babič M, Schmiedtová M, Poledne R, Herynek V, Horák D (2015) In vivo monitoring of rat macrophages labeled with poly(L-lysine)-iron oxide nanoparticles. J Biomed Mater Res B 103:1141–1148Google Scholar
  7. Babič M, Horák D, Molčan M, Timko M (2017) Heat generation of surface-modified magnetic γ-Fe2O3 nanoparticles in applied alternating magnetic field. J Phys D 50:345002CrossRefGoogle Scholar
  8. Bailey FEJ, Koleske JV (1976) Poly(Ethylene Oxide). Academic Press, New YorkGoogle Scholar
  9. Baner J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078CrossRefGoogle Scholar
  10. Barry SE (2008) Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperth 24:451–466CrossRefGoogle Scholar
  11. Bergna HE, Roberts WO (2005) Colloidal silica: fundamentals and applications. CRC Press, Santa BarbaraGoogle Scholar
  12. Bílková Z, Slováková M, Lyčka A, Horák D, Lenfeld J, Turková J, Churáček J (2002a) Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. J Chromatogr B 770:25–34CrossRefGoogle Scholar
  13. Bílková Z, Slováková M, Horák D, Lenfeld J, Churáček J (2002b) Enzymes immobilized on magnetic carriers: efficient and selective system for protein modification. J Chromatogr B 770:177–181CrossRefGoogle Scholar
  14. Bílková Z, Slováková M, Minc N, Futterer C, Cecal R, Horák D, Beneš M, le Potier I, Przybylski M, Viovy J-L (2006) Functionalized magnetic micro- and nanoparticles: optimization and application to μ-chip tryptic digestion. Electrophoresis 27:1811–1824Google Scholar
  15. Bober P, Zasonska BA, Humpolíček P, Kuceková Z, Varga M, Horák D, Babayan B, Kazantseva N, Prokeš J, Stejskal J (2016) Polyaniline-maghemite based dispersion: electrical, magnetic properties and their cytotoxicity. Synth Metals 214:23–29Google Scholar
  16. Bolto BA (1996) Magnetic particle technology: desalination and water reuse applications. Desalination 106:137–143Google Scholar
  17. Bolto BA, Spurling TH (1991) Water purification with magnetic particles. Environ Monit Assess 19:139–143CrossRefGoogle Scholar
  18. Borisova T, Krisanova N, Borysov A, Sivko R, Ostapchenko L, Babič M, Horák D (2014) Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport. Beilstein J Nanotechnol 5:778–788CrossRefGoogle Scholar
  19. Čadková M, Metelka R, Holubová L, Horák D, Dvořáková V, Bílková Z, Korecká L (2015) Magnetic beads-based electrochemical immunosensor for monitoring of allergenic food proteins. Anal Biochem Anal Biochem 484:4–8Google Scholar
  20. Callister WD, Rethwisch DG (2006) Material science and engineering: an Introduction, 7th edn. Wiley, New YorkGoogle Scholar
  21. Cao X, Horák D, An Z, Plichta Z (2016) RAFT polymerization of N,N-dimethylacrylamide from magnetic poly(2-hydroxyethyl methacrylate) microspheres to suppress nonspecific protein adsorption. J Polym Sci Part A Polym Chem 54:1036–1043Google Scholar
  22. Chandrasekharan P, Maity D, Yong CX, Chuang KH, Ding J, Feng SS (2011) Vitamin E (d-α-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 32:5663–5672CrossRefGoogle Scholar
  23. Chekina N, Horák D, Jendelová P, Trchová M, Beneš MJ, Hrubý M, Herynek V, Turnovcová K, Syková E (2011) Fluorescent magnetic nanoparticles for biomedical applications. J Mater Chem 21:7630–7639CrossRefGoogle Scholar
  24. Chen DH, Liao MH (2002) Preparation and characterization of YADH-bound magnetic nanoparticles. J Mol Catal B Enzym 16:283–291CrossRefGoogle Scholar
  25. Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62:339–345CrossRefGoogle Scholar
  26. Coey JMD (2010) Magnetism and magnetic materials. Cambridge University Press, CambridgeGoogle Scholar
  27. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261Google Scholar
  28. Covaliu CI, Berger D, Matei C, Diamandescu L, Vasile E, Cristea C, Ionita V, Iovu H (2011) Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications. J Nanopart Res 13:6169–6180CrossRefGoogle Scholar
  29. Dahl F, Baner J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M (2004) Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci USA 101:4548–4553CrossRefGoogle Scholar
  30. Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 398569Google Scholar
  31. Davis MT, Lee TD, Ronk M, Hefta SA (1995) Microscale immobilized protease reactor columns for peptide mapping by liquid chromatography/mass spectral analysis. Anal Biochem 224:235–244CrossRefGoogle Scholar
  32. de la Escosura-Muñiz A, Plichta Z, Horák D, Merkoçi A (2015) Alzheimer’s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosens Bioelectron 67:162–169CrossRefGoogle Scholar
  33. Dormer K, Seeney C, Lewelling K, Lian G, Gibson D, Johnson M (2005) Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field. Biomaterials 24:2061–2072Google Scholar
  34. Duan S, Wang R (2013) Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Prog Nat Sci 23:113–126CrossRefGoogle Scholar
  35. Duncan R, Sat YN (1998) Tumour targeting by enhanced permeability and retention (EPR) effect. Ann Oncol 9(Suppl 2):39Google Scholar
  36. Dunorier H, Muller S (2007) Histone autoantibodies. In: Shoenfeld Y, Meroni P-L, Gershwin ME (eds) Autoantibodies, 2nd ed. Elsevier, Amsterdam, pp 169–177Google Scholar
  37. Elaissari A, Fessi H (2010) Reactive and highly submicron magnetic latexes for bionanotechnology applications. Macromol Symp 288:115–120CrossRefGoogle Scholar
  38. Fairbanks BD, Thissen H, Maurdev G, Pasic P, White JF, Meagher L (2014) Inhibition of protein and cell attachment on materials generated from N-(2-hydroxypropyl)acrylamide. Biomacromol 15:3259–3266CrossRefGoogle Scholar
  39. Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG, Colaço B, Pires MJ, Colaço J, Ferreira R, Ginja M (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim (NY) 42:217–224CrossRefGoogle Scholar
  40. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2008) GLOBOCAN Cancer incidence and mortality worldwide.
  41. Fleige G, Seeberger F, Laux D, Kresse M, Taupitz M, Pilgrim H, Zimmer C (2002) In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol 37:482–488Google Scholar
  42. Flogel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118:140–148CrossRefGoogle Scholar
  43. Gallo J, Long NJ, Aboagye EO (2013) Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev 42:7816–7833CrossRefGoogle Scholar
  44. Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR (2016) Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem Res Int 7840161Google Scholar
  45. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor BC (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606CrossRefGoogle Scholar
  46. Goddard ED, Gruber JV (eds) (1999) Principles of science and technology in cosmetics and personal care. Marcel Dekker, New YorkGoogle Scholar
  47. Goss CJ (1988) Saturation magnetisation, coercivity and lattice parameter changes in the system Fe3O4-γ-Fe2O3, and their relationship to structure. Phys Chem Miner 16:164–171Google Scholar
  48. Greenwood R (2003) Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics. Adv Colloid Interface Sci 106:55–81CrossRefGoogle Scholar
  49. Guneri ET, Bureau C, Champ J, Mottet G, Perez-Toralla K, Bidard F-C, Pierga JY, Malaquin L, Viovy JL, Descroix S (2014) Ephesia: combining microfluidics and proximity ligation assay to analyze protein-protein interactions in single circulating tumour cells: a new tool for pharmaceutical research and personalized medicine. In: 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Antonio 2014, pp 588–590Google Scholar
  50. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  51. Hafeli UO, Rifle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6:1417–1428Google Scholar
  52. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742Google Scholar
  53. Harper S, Usenko C, Hutchison JE, Maddux BLS, Tanguay RL (2008) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J Exp Nanosci 3:195–206Google Scholar
  54. Harris MJ, Zalipsky S (eds) (1997) Poly(ethylene glycol), chemistry and biological applications. American Chemical Society, WashingtonGoogle Scholar
  55. Hasany SF, Ahmed I, Rajan J, Rehman A (2012) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. J Nanosci Nanotechnol 2:148–158CrossRefGoogle Scholar
  56. Heyn C, Bowen CV, Rutt BK, Foster PJ (2005) Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 53:312–320CrossRefGoogle Scholar
  57. Hlídková H, Kotelnikov I, Pop-Georgievski O, Proks V, Horák D (2017) Antifouling peptide dendrimer surface of monodisperse magnetic poly(glycidyl methacrylate) microspheres. Macromolecules 50:1302–1311CrossRefGoogle Scholar
  58. Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882CrossRefGoogle Scholar
  59. Horák D (2001) Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization. J Polym Sci A Polym Chem 39:3707–3715CrossRefGoogle Scholar
  60. Horák D, Hochel I (2005) Magnetic poly(glycidyl methacrylate) microspheres for ELISA Campylobacter jejuni detection in food. e-Polymers 5(060):2197–4586Google Scholar
  61. Horák D, Boháček J, Šubrt M (2000) Magnetic poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) microspheres by dispersion polymerization. J Polym Sci A Polym Chem 38:1161–1171CrossRefGoogle Scholar
  62. Horák D, Rittich B, Šafář J, Španová A, Lenfeld J, Beneš MJ (2001) Properties of RNase immobilized on magnetic poly(HEMA) microspheres. Biotechnol Prog 17:447–452CrossRefGoogle Scholar
  63. Horák D, Rittich B, Španová A, Beneš MJ (2005) Magnetic microparticulate carriers with immobilized selective ligands in DNA diagnostics. Polymer 46:1245–1255CrossRefGoogle Scholar
  64. Horák D, Babič M, Macková H, Beneš MJ (2007a) Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. J Sep Sci 30:1751–1772CrossRefGoogle Scholar
  65. Horák D, Rittich B, Španová A (2007b) Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products. J Magn Magn Mater 311:249–254Google Scholar
  66. Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Pientka Z, Pollert E, Hájek M, Syková E (2007c) D-mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 18:635–644CrossRefGoogle Scholar
  67. Horák D, Pollert E, Trchová M, Kovářová J (2009) Magnetic poly(glycidyl methacrylate)-based microspheres prepared by suspension polymerization in the presence of modified La0.75Sr0.25MnO3 nanoparticles. Eur Polym J 45:1009–1016Google Scholar
  68. Horák D, Babič M, Jendelová P, Herynek V, Trchová M, Likavčanová K, Kapcalová M, Hájek M, Syková E (2009b) The effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. J Magn Magn Mater 321:1539–1547CrossRefGoogle Scholar
  69. Horák D, Španová A, Tvrdíková J, Rittich B (2011) Streptavidin-modified magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for selective isolation of DNA. Eur Polym J 47:1090–1096Google Scholar
  70. Horák D, Kučerová J, Korecká L, Jankovičová B, Palarčík J, Mikulášek P, Bílková Z (2012a) New monodisperse magnetic polymer microspheres biofunctionalized for enzyme catalysis and bioaffinity separations. Macromol Biosci 12:647–655CrossRefGoogle Scholar
  71. Horák D, Balonová L, Mann BF, Plichta Z, Hernychová L, Novotny MV, Stulík J (2012b) Use of magnetic hydrazide-modified polymer microspheres for enrichment of Francisella tularensis glycoproteins. Soft Matter 8:2775–2786CrossRefGoogle Scholar
  72. Horák D, Svobodová Z, Autebert J, Coudert B, Královec K, Plichta Z, Bílková Z, Viovy J-L (2013) Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells. J Biomed Mater Res 101A:23–32Google Scholar
  73. Horák D, Hlídková H, Hiraoui M, Taverna M, Proks V, Mázl Chánová E, Smadja C, Kučerová Z (2014) Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: application to the immunocapture of ß-amyloid peptides. Macromol Biosci 14:1590–1599CrossRefGoogle Scholar
  74. Horák D, Hlídková H, Trachtová Š, Šlouf M, Rittich B, Španová A (2015a) Evaluation of poly(ethylene glycol)-coated monodisperse magnetic poly(2-hydroxyethyl methacrylate) and poly(glycidyl methacrylate) microspheres by PCR. Eur Polym J 68:687–696CrossRefGoogle Scholar
  75. Horák D, Plichta Z, Starykovych M, Myronovskij S, Kit Y, Chopyak V, Stoika R (2015b) Calf thymus histone-conjugated magnetic poly(2-oxoethyl methacrylate) microspheres for affinity isolation of anti-histone IgGs from blood serum of patients with systemic lupus erythematosus. RSC Adv 5:63050–63055CrossRefGoogle Scholar
  76. Horák D, Hlídková H, Klyuchivska O, Grytsyna I, Stoika R (2017) PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres by murine J774.2 macrophages. Appl Surf Sci 426:315–324Google Scholar
  77. Horák D, Hlídková H, Kit Y, Antonyuk V, Myronovsky S, Stoika R (2017) Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p 46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients. Biosci Rep 37Google Scholar
  78. Horák D, Pustovyy VI, Babinskiy AV, Palyvoda OM, Chekhun VF, Todor IN, Kuzmenko OI (2017c) Enhanced antitumor activity of surface-modified iron oxide nanoparticles and α-tocopherol derivative in a rat model of mammary gland carcinosarcoma. Int J Nanomed 12:4257–4268CrossRefGoogle Scholar
  79. Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7:11142–11154CrossRefGoogle Scholar
  80. Hughes MF, Long TC, Boyes WK, Ramabhadran R (2013) Whole-body retention and distribution of orally administered radiolabeled zerovalent iron nanoparticles in mice. Nanotoxicology 7:1064–1069CrossRefGoogle Scholar
  81. Jeong U, Teng X, Wang Y, Yang H, Xia Y (2006) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60CrossRefGoogle Scholar
  82. Jiráková K, Šeneklová M, Jirák D, Turnovcová K, Vosmanská M, Babič M, Horák D, Veverka P, Jendelová P (2016) The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors. Int J Nanomed 11:6267–6281CrossRefGoogle Scholar
  83. Jun Y, Seo J, Cheon J (2008) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189CrossRefGoogle Scholar
  84. Justin C, Philip SA, Samrot AV (2017) Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Appl Nanosci 7:463–475CrossRefGoogle Scholar
  85. Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596CrossRefGoogle Scholar
  86. Knobel M, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8:2836–2857CrossRefGoogle Scholar
  87. Koneracká M, Kopčanský P, Timko M, Ramchand CN, de Sequeira A, Trevan M (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Mol Catal B Enzym 18:13–18Google Scholar
  88. Kontogeorgis GM, Kiil S (2016) Colloid stability—Part I. In: Introduction to applied colloid and surface chemistry. Wiley, ChichesterGoogle Scholar
  89. Korecká L, Ježová J, Bílková Z, Beneš M, Horák D, Hradcová O, Slováková M, Viovy J-L (2005) Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins. J Magn Magn Mater 293:349–357CrossRefGoogle Scholar
  90. Kostiv U, Patsula V, Šlouf M, Pongrac I, Škokić S, Radmilović M, Pavičić I, Vinković Vrček I, Gajović S, Horák D (2017) Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4 & SiO2 core-shell nanoparticles. RSC Adv 7:8786–8797CrossRefGoogle Scholar
  91. Koubková J, Müller P, Hlídková H, Plichta Z, Proks V, Vojtěšek B, Horák D (2014) Magnetic poly(glycidyl methacrylate) microspheres for capture of proteins. New Biotechnol 31:482–491Google Scholar
  92. Křížová J, Španová A, Rittich B, Horák D (2005) Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. J Chromatogr A 1064:247–253CrossRefGoogle Scholar
  93. Kuan W-C, Horák D, Plichta Z, Lee W-C (2014) Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups. Mater Sci Eng C 34:193–200CrossRefGoogle Scholar
  94. Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang NM, Park JG, Hyeon T (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584CrossRefGoogle Scholar
  95. Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14CrossRefGoogle Scholar
  96. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110Google Scholar
  97. Levison PR, Badger SE, Hathi P, Davies MJ, Bruce IJ, Grimm V (1998) New approaches to the isolation of DNA by ion-exchange chromatography. J Chromatogr A 1(827):337–344CrossRefGoogle Scholar
  98. Lewis AL (2000) Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B 18:261–275CrossRefGoogle Scholar
  99. Macková H, Proks V, Horák D, Kučka J, Trchová M (2011) Magnetic poly(N-propargylacrylamide) microspheres: preparation by precipitation polymerization and use in model click reactions. J Polym Sci A Polym Chem 49:4820–4829Google Scholar
  100. Macková H, Horák D, Petrovský E, Kovářová J (2013) Magnetic hollow poly(N-isopropylacrylamide-co-N,N′-methylenebisacrylamide-co-glycidyl acrylate) particles prepared by inverse emulsion polymerization. Colloid Polym Sci 291:205–213Google Scholar
  101. Macková H, Horák D, Donchenko GV, Andrijaka VI, Palyvoda OM, Chernishov VI, Chekhun VF, Todor IN, Kuzmenko OI (2015) Colloidally stable surface-modified iron oxide nanoparticles: preparation, characterization and anti-tumor activity. J Magn Magn Mater 380:125–131Google Scholar
  102. Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S (2011a) Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci 2:118–140Google Scholar
  103. Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–7276Google Scholar
  104. Majewski P, Thierry B (2007) Functionalized magnetite nanoparticles—synthesis, properties, and bio-applications. Crit Rev Solid State Mater Sci 32:203–215CrossRefGoogle Scholar
  105. May CA (ed) (1988) Epoxy resins chemistry and technology, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  106. Møller P (2005) Genotoxicity of environmental agents assessed by the alkaline comet assay. Basic Clin Pharmacol Toxicol 96(Suppl 1):1–42Google Scholar
  107. Moskvin M, Babič M, Reis S, Cruz MM, Ferreira LP, Deus Carvalho M, Costa Lima SA, Horák D (2018) Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids Surf B 161:35–41Google Scholar
  108. Narain R (ed) (2011) Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles and hydrogels. Wiley, HobokenGoogle Scholar
  109. Narayan R (ed) (2009) Biomedical materials. Springer, New YorkGoogle Scholar
  110. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  111. Novotna L, Emmerova T, Horak D, Kucerova Z, Ticha M (2010) Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based polymer microspheres for phosphopeptide enrichment. J Chromatogr A 1217:8032–8040CrossRefGoogle Scholar
  112. Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomed 10:3097–3114Google Scholar
  113. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D—Appl Phys 36:167–181CrossRefGoogle Scholar
  114. Papell SS (1965) Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, US Pat. 3,215,572Google Scholar
  115. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRefGoogle Scholar
  116. Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 19:1553–1566CrossRefGoogle Scholar
  117. Parton E, Palma RD, Borghs G (2007) Biomedical applications using magnetic nanoparticles. Solid State Technol 50:47–50Google Scholar
  118. Patsula V, Petrovský E, Kovářová J, Konefal R, Horák D (2014) Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes. Colloid Polym Sci 292:2097–2110CrossRefGoogle Scholar
  119. Patsula V, Moskvin M, Dutz S, Horák D (2016) Size-dependent magnetic properties of iron oxide nanoparticles. J Phys Chem Solids 88:24–30CrossRefGoogle Scholar
  120. Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO (1995) Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interface Sci 55:241–269CrossRefGoogle Scholar
  121. Pongrac I, Dobrivojevic M, Brkic Ahmed L, Babič M, Šlouf M, Horák D, Gajovic S (2016a) Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles. Beilstein J Nanotechnol 7:926–936CrossRefGoogle Scholar
  122. Pongrac I, Pavičić I, Milić M, Brkić Ahmed L, Babič M, Horák D, Vrček IV, Gajović S (2016b) Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. Int J Nanomed 11:1701–1715Google Scholar
  123. Přikryl P, Horák D, Tichá M, Kučerová Z (2006) Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation. J Sep Sci 29:2541–2549CrossRefGoogle Scholar
  124. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293CrossRefGoogle Scholar
  125. Qiu Y, Wang F, Liu Y-M, Wang W, Chu L-Y, Wang H-L (2015) Microfluidic-based fabrication, characterization and magnetic functionalization of microparticles with novel internal anisotropic structure. Sci Rep 5:13060Google Scholar
  126. Ramimoghadam D, Bagheri S, Hamid SBA (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 368:207–229CrossRefGoogle Scholar
  127. Rao SV, Anderson KW, Bachas LG (1998) Oriented immobilization of proteins. Microchim Acta 128:127–143CrossRefGoogle Scholar
  128. Reymond F, Vollet C, Plichta Z, Horák D (2013) Fabrication and characterization of tosyl-activated magnetic and non-magnetic monodisperse microspheres for use in microfluic-based ferritin immunoassay. Biotechnol Progr 29:532–542CrossRefGoogle Scholar
  129. Rittich B, Španová A, Ohlashenyy Yu, Lenfeld J, Rudolf I, Horák D, Beneš MJ (2002) Characterization of deoxyribonuclease I immobilized on magnetic hydrophilic polymer particles. J Chromatogr B 774:25–31CrossRefGoogle Scholar
  130. Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17:2783–2788CrossRefGoogle Scholar
  131. Rotková J, Šuláková R, Korecká L, Zdražilová P, Jandová M, Lenfeld J, Horák D, Bílková Z (2009) Laccase immobilized on magnetic carriers for biotechnology applications. J Magn Mater 321:1335–1340Google Scholar
  132. Sakai-Kato K, Kato M, Toyooka T (2003) Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal Chem 75:388–393CrossRefGoogle Scholar
  133. Salih T, Ahlford A, Nilsson M, Plichta Z, Horák D (2016) Streptavidin-modified monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols. Mater Sci Eng C 61:362–367CrossRefGoogle Scholar
  134. Saravanan P, Alam S, Mathur GN (2003) Comparative study on the synthesis of γ-Fe2O3 and Fe3O4 nanocrystals using high-temperature solution-phase technique. J Mater Sci Lett 22:1283–1285CrossRefGoogle Scholar
  135. Shang H, Chang WS, Kan S, Majetich SA, Lee GU (2006) Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization. Langmuir 22:2516–2522CrossRefGoogle Scholar
  136. Sharma SK, Mudhoo A (eds) (2011) A handbook of applied biopolymer technology: synthesis, degradation and applications. Royal Society Chemistry, CambridgeGoogle Scholar
  137. Shubayev VI, Pisanic TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477CrossRefGoogle Scholar
  138. Shubhra QTH, Kardos AF, Feczkó T, Mackova H, Horák D, Tóth J, Gyenis J (2014) Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part I. Effect of process variables on the mean size of magnetic PLGA nanoparticles. J Microencapsul 31:147–155Google Scholar
  139. Singh NP, McCoy MT, Tice RR, Schneider EI (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefGoogle Scholar
  140. Siow WX, Chang Y-T, Babič M, Lu Y-C, Horák D, Ma Y-H (2018) Interaction of poly(L-lysine) coating and heparan sulfate proteoglycan modulate magnetic nanoparticle uptake in tumor cells. Int J Nanomed 13:1693–1706CrossRefGoogle Scholar
  141. Slavin S, Burns J, Haddleton DM, Becer CR (2011) Synthesis of glycopolymers via click reactions. Eur Polym J 47:435–446CrossRefGoogle Scholar
  142. Španová A, Rittich B, Horák D, Lenfeld J, Prodělalová J, Sučiková J, Štrumcová S (2003) Immunomagnetic separation and detection of Salmonella cells using newly designed magnetic carriers. J Chromatogr A 1009:215–221CrossRefGoogle Scholar
  143. Strehl C, Maurizi L, Gaber T, Hoff P, Broschard T, Poole AR, Hofmann H, Buttgereit F (2016) Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans. Int J Nanomed 11:5883–5896CrossRefGoogle Scholar
  144. Sun R, Dittrich J, Le-Huu M, Mueller MM, Bedke J, Kartenbeck J, Lehman JK, Krueger R, Bock M, Huss R, Seliger C, Grone HJ, Misselwitz B, Semmler W, Kiessling F (2005) Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest Radiol 40:504–513Google Scholar
  145. Svobodová Z, Jankovičová B, Plichta Z, Horák D, Bílková Z (2018) Evaluation of colorimetric BCA-based quantification of hydrazide groups on magnetic particles. J Spectrosc 5492893Google Scholar
  146. Tadros T, Tadros TF (eds) (2006) General Principles of colloid stability and the role of surface forces, in colloid stability: the role of surface forces, Part I, vol 1. Wiley-VCH, WeinheimGoogle Scholar
  147. Tanyolac D, Ozdural AR (2000) A new low cost magnetic material: magnetic polyvinylbutyral microbeads. React Funct Polym 43:279–286CrossRefGoogle Scholar
  148. Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Ch 55:22–45CrossRefGoogle Scholar
  149. Teoh WY, Amal R, Mädler L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2:1324–1347CrossRefGoogle Scholar
  150. Thanh NTK (ed) (2018) Clinical applications of magnetic nanoparticles. CRC PressGoogle Scholar
  151. Thurman JM, Serkova NJ (2013) Nano-sized contrast agents to non-invasively detect renal inflammation by magnetic resonance imaging. Adv Chronic Kidney Dis 20:488–499CrossRefGoogle Scholar
  152. Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13:342–355Google Scholar
  153. Trachtová Š, Španová A, Horák D, Kozáková H, Rittich B (2016) Real-time polymerase chain reaction as a tool for evaluation of magnetic poly(glycidyl methacrylate)-based microspheres in molecular diagnostics. Curr Pharm Des 22:639–646CrossRefGoogle Scholar
  154. Trojánek Z, Kovařík A, Španová A, Marošiová K, Horák D, Rittich B (2018) Application of magnetic polymethacrylate-based microspheres for the isolation of DNA from raw vegetables and processed foods of plant origin. J Food Process Preserv 42:e13384CrossRefGoogle Scholar
  155. Ugelstad J (1984) Monodisperse polymer particles and dispersions thereof, US Patent 4,459,378Google Scholar
  156. Umut E (2013) Surface modification of nanoparticles used in biomedical applications. In: Aliofkhazraei M (ed) Modern surface engineering treatments. InTechGoogle Scholar
  157. Uthaman S, Lee SJ, Cherukula K, Cho CS, Park IK (2015) Polysaccharide-coated magnetic nanoparticles for imaging and gene therapy. Biomed Res Int 959175Google Scholar
  158. Vohlídal J (1995) Makromolekulární chemie. Karolinum, Prague, Czech RepublicGoogle Scholar
  159. Voinov MA, Sosa Pagán JO, Morrison E, Smirnova TI, Smirnov AI (2011) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133:35–41CrossRefGoogle Scholar
  160. Vrček IV, Pavičić I, Crnković T, Jurašin D, Babič M, Horák D, Lovrić M, Ferhatović L, Ćurlin M, Gajović S (2015) Does surface coating of metallic nanoparticles modulate their interferences with in vitro assays? RSC Adv 5:70787–70807CrossRefGoogle Scholar
  161. Wang W, Dong H, Pacheco V, Willbold D, Zhang Y, Offenhaeusser A, Hartmann R, Weirich TE, Ma P, Krause H, Gu Z (2011) Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields. J Phys Chem B 115:14789–14793CrossRefGoogle Scholar
  162. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron-oxide—pharmacokinetics and toxicity. Am J Roentgenol 152:167–173CrossRefGoogle Scholar
  163. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  164. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRefGoogle Scholar
  165. Xu C, Yuan Z, Kohler N, Kim J, Chung MA, Sun S (2009) FePt nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc 131:15346–15351CrossRefGoogle Scholar
  166. Yan J, Horák D, Lenfeld J, Hammond M, Kamali-Moghaddam M (2013) A tosyl-activated magnetic bead cellulose as solid support for sensitive protein detection. J Biotechnol 167:235–240CrossRefGoogle Scholar
  167. Yang J, Kopeček J (2015) Backbone degradable and coiled-coil based macromolecular therapeutics. In: Gu Z (ed) Bioinspired and biomimetic polymer systems for drug and gene delivery. Wiley-WCH, WeinheimGoogle Scholar
  168. Yi DK, Lee SS, Papaefthymiou GC, Ying JY (2006) Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem Mater 18:614–619CrossRefGoogle Scholar
  169. Zasonska BA, Boiko N, Horák D, Klyuchivska O, Macková H, Beneš M, Babič M, Trchová M, Hromádková J, Stoika R (2012) The use of hydrophilic poly(N,N-dimethylacrylamide) grafted from magnetic γ-Fe2O3 nanoparticles to promote engulfment by mammalian cells. J Biomed Nanotechnol 9:479–491Google Scholar
  170. Zasonska BA, Bober P, Jošt P, Petrovský E, Boštík P, Horák D (2016) Magnetoconductive maghemite core/polyaniline shell nanoparticles as promising tools for biomedical applications. Colloids Surf B Biointerfaces 141:382–389CrossRefGoogle Scholar
  171. Zasońska BA, Boiko N, Klyuchivska O, Trchová M, Petrovský E, Stoika R, Horák D (2013a) Silica-coated γ-Fe2O3 nanoparticles: preparation and engulfment by mammalian macrophages. J Nanopharm Drug Deliv 1:182–192CrossRefGoogle Scholar
  172. Zasońska BA, Boiko N, Horák D, Klyuchivska O, Macková H, Beneš MJ, Babič M, Trchová M, Hromádková J, Stoika R (2013b) The use of hydrophilic poly(N,N-dimethylacrylamide) for promoting engulfment of magnetic γ-Fe2O3 nanoparticles by mammalian cells. J Biomed Nanotechnol 9:479–491CrossRefGoogle Scholar
  173. Zasońska BA, Líšková A, Kuricová M, Tulinská J, Pop-Georgievski O, Čiampor F, Vávra I, Dušinská M, Ilavská S, Horváthová M, Horák D (2016) Functionalized porous silica and maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity. Croat Med J 57:165–179CrossRefGoogle Scholar
  174. Zhang Q, Rajan SS, Tyner KM, Casey BJ, Dugard CK, Jones Y, Paredes AM, Clingman CS, Howard PC, Goering PL (2016) Effects of iron oxide nanoparticles on biological responses and MR imaging properties in human mammary healthy and breast cancer epithelial cells. J Biomed Mater Res B 104:1032–1042CrossRefGoogle Scholar
  175. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci l25:677–710Google Scholar
  176. Zuo Y, Hoigné J (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ Sci Technol 26:1014–1022CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Macromolecular Chemistry, Czech Academy of SciencesPrague 6Czech Republic

Personalised recommendations