Advertisement

Persistence, Toxicity, and Biodegradation of Gold- and Iron Oxide-Based Nanoparticles in the Living Systems

  • Kanwal Akhtar
  • Yasir JavedEmail author
  • Naveed A. Shad
  • Navadeep Shrivastava
  • S. K. Sharma
Chapter
  • 50 Downloads
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Inorganic nanomaterials have been extensively investigated for several biological applications ranging from targeted drug delivery to cancer treatment and tissue engineering to in vivo imaging. Gold and iron oxide nanoparticles (IONPs) are important candidate of inorganic nanomaterials considering their non-toxic nature and relevant magnetic and optical properties. Most of the biomedical applications involve detailed tuning of surface charge and physiochemical properties. Understanding of pharmacokinetics of these nanoparticles is very important to elaborate on the distribution and fate in the living organism. Many factors including size distribution, charge, and plasma protein adsorption; coating molecules can tune effectively to monitor the biodistribution and pharmacokinetics of the gold- and iron oxide-based nanoparticles. This chapter reviews the crucial parameters that affect the biodistribution, fate, and toxicity of the inorganic nanoparticles in the biological systems.

Keywords

Inorganic nanomaterials Biomedical applications Pharmacokinetics Bio-distribution Bio-degradation 

References

  1. Abe S, Kida I, Esaki M, Akasaka T, Uo M, Hosono T, Sato Y, Jeyadevan B, Kuboki Y, Morita M (2009) Biodistribution imaging of magnetic particles in mice: X-ray scanning analytical microscopy and magnetic resonance imaging. Bio-Med Mater Eng 19:213–220.  https://doi.org/10.3233/bme-2009-0583CrossRefGoogle Scholar
  2. Adams DH, Eksteen B (2006) Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 6:244–251.  https://doi.org/10.1038/nri1784CrossRefGoogle Scholar
  3. Albanese A, Chan WC (2011) Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5:5478–5489.  https://doi.org/10.1021/nn2007496CrossRefGoogle Scholar
  4. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515.  https://doi.org/10.1021/mp800051mCrossRefGoogle Scholar
  5. Almeida JPM, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6:815–835.  https://doi.org/10.2217/nnm.11.79CrossRefGoogle Scholar
  6. Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44:8576–8607.  https://doi.org/10.1039/c5cs00541hCrossRefGoogle Scholar
  7. Bachmann R, Conrad R, Kreft B, Luzar O, Block W, Flacke S, Pauleit D, Träber F, Gieseke J, Saebo K (2002) Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan®, (NC100150) for MRI of renal perfusion: experimental study in an animal model. J Magn Reson Imaging 16:190–195.  https://doi.org/10.1002/jmri.10149CrossRefGoogle Scholar
  8. Balasubramanian SK, Jittiwat J, Manikandan J, Ong C-N, Liya EY, Ong W-Y (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–2042.  https://doi.org/10.1016/j.biomaterials.2009.11.079CrossRefGoogle Scholar
  9. Bargheer D, Giemsa A, Freund B, Heine M, Waurisch C, Stachowski GM, Hickey SG, Eychmüller A, Heeren J, Nielsen P (2015a) The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein J Nanotechnol 6:111.  https://doi.org/10.3762/bjnano.6.11CrossRefGoogle Scholar
  10. Bargheer D, Nielsen J, Gébel G, Heine M, Salmen SC, Stauber R, Weller H, Heeren J, Nielsen P (2015b) The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol 6:36.  https://doi.org/10.3762/bjnano.6.5CrossRefGoogle Scholar
  11. Beckmann N, Cannet C, Babin AL, Blé FX, Zurbruegg S, Kneuer R, Dousset V (2009) In vivo visualization of macrophage infiltration and activity in inflammation using magnetic resonance imaging. Wiley Interdisc Rev Nanomed Nanobiotechnol 1:272–298.  https://doi.org/10.1002/wnan.16CrossRefGoogle Scholar
  12. Bernd H, De Kerviler E, Gaillard S, Bonnemain B (2009) Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 44:336–342.  https://doi.org/10.1097/rli.0b013e3181a0068bCrossRefGoogle Scholar
  13. Berry C (2008) Intracellular delivery of nanoparticles via the HIV-1 tat peptide.  https://doi.org/10.2217/17435889.3.3.357
  14. Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee J-M, Jacobs PM, Lewis JM (2006) Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 41:313–324.  https://doi.org/10.1097/01.rli.0000197669.80475.ddCrossRefGoogle Scholar
  15. Branca M, Marciello M, Ciuculescu-Pradines D, Respaud M, del Puerto Morales M, Serra R, Casanove M-J, Amiens C (2015) Towards MRI T2 contrast agents of increased efficiency. J Magn Magn Mater 377:348–353.  https://doi.org/10.1016/j.jmmm.2014.10.086CrossRefGoogle Scholar
  16. Briley-Saebo KC, Cho YS, Shaw PX, Ryu SK, Mani V, Dickson S, Izadmehr E, Green S, Fayad ZA, Tsimikas S (2011) Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol 57:337–347.  https://doi.org/10.1016/j.jacc.2010.09.023CrossRefGoogle Scholar
  17. Carambia A, Freund B, Schwinge D, Bruns OT, Salmen SC, Ittrich H, Reimer R, Heine M, Huber S, Waurisch C (2015) Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. J Hepatol 62:1349–1356.  https://doi.org/10.1016/j.jhep.2015.01.006CrossRefGoogle Scholar
  18. Carrillo-Carrión C, Nazarenus M, Paradinas SS, Carregal-Romero S, Almendral MJ, Fuentes M, Pelaz B, del Pino P, Hussain I, Clift MJ (2014) Metal ions in the context of nanoparticles toward biological applications. Curr Opin Chem Eng 4:88–96.  https://doi.org/10.1016/j.coche.2013.11.006CrossRefGoogle Scholar
  19. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055.  https://doi.org/10.1073/pnas.0608582104CrossRefGoogle Scholar
  20. Chertok B, Cole AJ, David AE, Yang VC (2010) Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Mol Pharm 7:375–385.  https://doi.org/10.1021/mp900161hCrossRefGoogle Scholar
  21. Chithrani DB, Dunne M, Stewart J, Allen C, Jaffray DA (2010) Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier. Nanomed Nanotechnol Biol Med 6:161–169.  https://doi.org/10.1016/j.nano.2009.04.009CrossRefGoogle Scholar
  22. Cho W-S, Cho M, Jeong J, Choi M, Han BS, Shin H-S, Hong J, Chung BH, Jeong J, Cho M-H (2010) Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 245:116–123.  https://doi.org/10.1016/j.taap.2010.02.013CrossRefGoogle Scholar
  23. Clarke S, Pinaud F, Beutel O, You C, Piehler J, Dahan M (2010) Covalent monofunctionalization of peptide-coated quantum dots for single-molecule assays. Nano Lett 10:2147–2154.  https://doi.org/10.1021/nl100825nCrossRefGoogle Scholar
  24. Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC (2011a) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32:2183–2193.  https://doi.org/10.1016/j.biomaterials.2010.11.040CrossRefGoogle Scholar
  25. Cole AJ, David AE, Wang J, Galbán CJ, Yang VC (2011b) Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials 32:6291–6301.  https://doi.org/10.1016/j.biomaterials.2011.05.024CrossRefGoogle Scholar
  26. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334.  https://doi.org/10.1039/c2cs15337hCrossRefGoogle Scholar
  27. Cui X, Li Z, Zhong S, Wang B, Han Y, Wang H, Möhwald H (2013) A facile sonochemical route for the fabrication of magnetic protein microcapsules for targeted delivery. Chem-A Eur J 19:9485–9488.  https://doi.org/10.1002/chem.201301302CrossRefGoogle Scholar
  28. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919.  https://doi.org/10.1016/j.biomaterials.2007.12.037CrossRefGoogle Scholar
  29. del Pino P (2014) Tailoring the interplay between electromagnetic fields and nanomaterials toward applications in life sciences: a review. J Biomed Opt 19:101507.  https://doi.org/10.1117/1.jbo.19.10.101507CrossRefGoogle Scholar
  30. Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Ménager C, Gazeau F, Wilhelm C (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35:6400–6411.  https://doi.org/10.1016/j.biomaterials.2014.04.036CrossRefGoogle Scholar
  31. Ding H-m, Ma Y-q (2014) Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials 35:8703–8710.  https://doi.org/10.1016/j.biomaterials.2014.06.033
  32. Docter D, Strieth S, Westmeier D, Hayden O, Gao M, Knauer SK, Stauber RH (2015a) No king without a crown–impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine 10:503–519.  https://doi.org/10.2217/nnm.14.184CrossRefGoogle Scholar
  33. Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer S, Stauber R (2015b) The nanoparticle biomolecule corona: lessons learned–challenge accepted? Chem Soc Rev 44:6094–6121.  https://doi.org/10.1039/c5cs00217fCrossRefGoogle Scholar
  34. Drakesmith H, Prentice A (2008) Viral infection and iron metabolism. Nat Rev Microbiol 6:541–552.  https://doi.org/10.1038/nrmicro1930CrossRefGoogle Scholar
  35. Fadeel B, Feliu N, Vogt C, Abdelmonem AM, Parak WJ (2013) Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. Wiley Interdisc Rev Nanomed Nanobiotechnol 5:111–129.  https://doi.org/10.1002/wnan.1206CrossRefGoogle Scholar
  36. Feliu N, Docter D, Heine M, del Pino P, Ashraf S, Kolosnjaj-Tabi J, Macchiarini P, Nielsen P, Alloyeau D, Gazeau F, Stauber RH, Parak WJ (2016) In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev 45:2440–2457.  https://doi.org/10.1039/c5cs00699fCrossRefGoogle Scholar
  37. Ferguson RM, Khandhar AP, Kemp SJ, Arami H, Saritas EU, Croft LR, Konkle J, Goodwill PW, Halkola A, Rahmer J (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34:1077–1084.  https://doi.org/10.1109/tmi.2014.2375065CrossRefGoogle Scholar
  38. Ferrari M, Philibert M, Sanhai W (2009) Nanomedicine and society. Clin Pharmacol Ther 85:466–467.  https://doi.org/10.1038/nbt1377CrossRefGoogle Scholar
  39. Ferreira M, Mousavi B, Ferreira P, Martins C, Helm L, Martins JA, Geraldes CF (2012) Gold nanoparticles functionalised with stable, fast water exchanging Gd 3+ chelates as high relaxivity contrast agents for MRI. Dalton Trans 41:5472–5475.  https://doi.org/10.1039/c2dt30388dCrossRefGoogle Scholar
  40. Frericks BB, Wacker F, Loddenkemper C, Valdeig S, Hotz B, Wolf K-J, Misselwitz B, Kühl A, Hoffmann JC (2009) Magnetic resonance imaging of experimental inflammatory bowel disease: quantitative and qualitative analyses with histopathologic correlation in a rat model using the ultrasmall iron oxide SHU 555 C. Invest Radiol 44:23–30.  https://doi.org/10.1097/rli.0b013e3181899025CrossRefGoogle Scholar
  41. Freund B, Tromsdorf UI, Bruns OT, Heine M, Giemsa A, Bartelt A, Salmen SC, Raabe N, Heeren J, Ittrich H (2012) A simple and widely applicable method to 59Fe-radiolabel monodisperse superparamagnetic iron oxide nanoparticles for in vivo quantification studies. ACS Nano 6:7318–7325.  https://doi.org/10.1021/nn3024267CrossRefGoogle Scholar
  42. Giustini A, Ivkov R, Hoopes P (2011) Magnetic nanoparticle biodistribution following intratumoral administration. Nanotechnology 22:345101.  https://doi.org/10.1088/0957-4484/22/34/345101CrossRefGoogle Scholar
  43. Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214.  https://doi.org/10.1038/nature03808CrossRefGoogle Scholar
  44. Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, Conolly SM (2012) X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24:3870–3877.  https://doi.org/10.1002/adma.201200221CrossRefGoogle Scholar
  45. Gu L, Fang RH, Sailor MJ, Park J-H (2012) In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano 6:4947–4954.  https://doi.org/10.1021/nn300456zCrossRefGoogle Scholar
  46. Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci 3:66–73.  https://doi.org/10.1109/tnb.2003.820277CrossRefGoogle Scholar
  47. Hainfeld J, Slatkin D, Focella T, Smilowitz H (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253.  https://doi.org/10.1259/bjr/13169882CrossRefGoogle Scholar
  48. Hasan D, Chalouhi N, Jabbour P, Dumont AS, Kung DK, Magnotta VA, Young WL, Hashimoto T, Winn HR, Heistad D (2012) Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm: a pilot study. Stroke 43:3258–3265.  https://doi.org/10.1161/strokeaha.112.673400CrossRefGoogle Scholar
  49. Helou M, Reisbeck M, Tedde SF, Richter L, Bär L, Bosch JJ, Stauber RH, Quandt E, Hayden O (2013) Time-of-flight magnetic flow cytometry in whole blood with integrated sample preparation. Lab Chip 13:1035–1038.  https://doi.org/10.1039/c3lc41310aCrossRefGoogle Scholar
  50. Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896.  https://doi.org/10.1007/s00018-009-0053-zCrossRefGoogle Scholar
  51. Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936.  https://doi.org/10.1002/jps.1143CrossRefGoogle Scholar
  52. Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schäffler M, Takenaka S, Möller W, Schmid G, Simon U (2011) Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:407–416.  https://doi.org/10.1016/j.ejpb.2010.12.029CrossRefGoogle Scholar
  53. Hoopes PJ, Petryk AA, Gimi B, Giustini AJ, Weaver JB, Bischof J, Chamberlain R, Garwood M (2012) In vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution. In: Medical imaging 2012: biomedical applications in molecular, structural, and functional imaging. International society for optics and photonics, p 83170R.  https://doi.org/10.1117/12.916097
  54. Howarth S, Tang T, Trivedi R, Weerakkody R, U-King-Im J, Gaunt M, Boyle J, Li Z, Miller S, Graves M (2009) Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: a comparison of symptomatic and asymptomatic individuals. Eur J Radiol 70:555–560.  https://doi.org/10.1016/j.ejrad.2008.01.047
  55. Hua M-Y, Liu H-L, Yang H-W, Chen P-Y, Tsai R-Y, Huang C-Y, Tseng I-C, Lyu L-A, Ma C-C, Tang H-J (2011) The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 32:516–527.  https://doi.org/10.1016/j.biomaterials.2010.09.065CrossRefGoogle Scholar
  56. Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, Chen X (2010) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4:7151–7160.  https://doi.org/10.1021/nn101643uCrossRefGoogle Scholar
  57. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327.  https://doi.org/10.1021/mp7001285CrossRefGoogle Scholar
  58. Javed Y, Akhtar K, Anwar H, Jamil Y (2017) MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture. J Nanopart Res 19:366.  https://doi.org/10.1007/s11051-017-4045-xCrossRefGoogle Scholar
  59. Jia Y-P, Ma B-Y, Wei X-W, Qian Z-Y (2017) The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 28:691–702.  https://doi.org/10.1016/j.cclet.2017.01.021CrossRefGoogle Scholar
  60. Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, Bo T, Napier ME, Ting JP, DeSimone JM (2013) Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Investig 123:3061–3073.  https://doi.org/10.1172/JCI66895CrossRefGoogle Scholar
  61. Klapper Y, Maffre P, Shang L, Ekdahl KN, Nilsson B, Hettler S, Dries M, Gerthsen D, Nienhaus GU (2015) Low affinity binding of plasma proteins to lipid-coated quantum dots as observed by in situ fluorescence correlation spectroscopy. Nanoscale 7:9980–9984.  https://doi.org/10.1039/C5NR01694KCrossRefGoogle Scholar
  62. Kolosnjaj-Tabi J, Javed Y, Lartigue L, Volatron J, Elgrabli D, Marangon I, Pugliese G, Caron B, Figuerola A, Luciani N, Pellegrino T, Alloyeau D, Gazeau F (2015) The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9:7925–7939.  https://doi.org/10.1021/acsnano.5b00042CrossRefGoogle Scholar
  63. Kolosnjaj-Tabi J, Volatron J, Gazeau F (2017) Basic principles of in vivo distribution, toxicity, and degradation of prospective inorganic nanoparticles for imaging. In: Design and applications of nanoparticles in biomedical imaging. Springer, pp 9–41.  https://doi.org/10.1007/978-3-319-42169-8_2
  64. Kreyling WG, Abdelmonem AM, Ali Z, Alves F, Geiser M, Haberl N, Hartmann R, Hirn S, De Aberasturi DJ, Kantner K (2015) In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol 10:619.  https://doi.org/10.1038/nnano.2015.111CrossRefGoogle Scholar
  65. Krüger D, Rousseau R, Fuchs H, Marx D (2003) Towards “mechanochemistry”: mechanically induced isomerizations of thiolate–gold clusters. Angew Chem Int Ed 42:2251–2253.  https://doi.org/10.1002/anie.200351000CrossRefGoogle Scholar
  66. Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim et Biophys Acta (BBA)-Gen Subj 1810:361–373.  https://doi.org/10.1016/j.bbagen.2010.04.007
  67. Lan Q, Hsiung CA, Matsuo K, Hong Y-C, Seow A, Wang Z, Hosgood HD III, Chen K, Wang J-C, Chatterjee N (2012) Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet 44:1330.  https://doi.org/10.1038/ng.2456CrossRefGoogle Scholar
  68. Lartigue L, Alloyeau D, Kolosnjaj-Tabi J, Javed Y, Guardia P, Riedinger A, Péchoux C, Pellegrino T, Wilhelm C, Gazeau F (2013) Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano 7:3939–3952.  https://doi.org/10.1021/nn305719yCrossRefGoogle Scholar
  69. Levy R, Shaheen U, Cesbron Y, See V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1:4889.  https://doi.org/10.3402/nano.v1i0.4889CrossRefGoogle Scholar
  70. Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron F (2011) Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32:3988–3999.  https://doi.org/10.1016/j.biomaterials.2011.02.031CrossRefGoogle Scholar
  71. Lévy M, Lagarde F, Maraloiu V-A, Blanchin M-G, Gendron F, Wilhelm C, Gazeau F (2010) Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21:395103.  https://doi.org/10.1088/0957-4484/21/39/395103CrossRefGoogle Scholar
  72. Lévy M, Wilhelm C, Devaud M, Levitz P, Gazeau F (2012) How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. Contrast Media Mol Imaging 7:373–383.  https://doi.org/10.1002/cmmi.504CrossRefGoogle Scholar
  73. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101:14036–14039.  https://doi.org/10.1073/pnas.0406115101CrossRefGoogle Scholar
  74. Lin C-AJ, Yang T-Y, Lee C-H, Huang SH, Sperling RA, Zanella M, Li JK, Shen J-L, Wang H-H, Yeh H-I (2009) Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3:395–401.  https://doi.org/10.1021/nn800632jCrossRefGoogle Scholar
  75. Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, Kissel T, Parak WJ, Kreyling WG (2010) Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31:6574–6581.  https://doi.org/10.1016/j.biomaterials.2010.05.009CrossRefGoogle Scholar
  76. Liu J, Yu M, Zhou C, Yang S, Ning X, Zheng J (2013) Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J Am Chem Soc 135:4978–4981.  https://doi.org/10.1021/ja401612xCrossRefGoogle Scholar
  77. Lou S, Ye J-y, Li K-q, Wu A (2012) A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size. Analyst 137:1174–1181.  https://doi.org/10.1039/C2AN15844BCrossRefGoogle Scholar
  78. Lu M, Cohen MH, Rieves D, Pazdur R (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85:315–319.  https://doi.org/10.1002/ajh.21656CrossRefGoogle Scholar
  79. Lunov O, Syrovets T, Röcker C, Tron K, Nienhaus GU, Rasche V, Mailänder V, Landfester K, Simmet T (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022.  https://doi.org/10.1016/j.biomaterials.2010.08.003CrossRefGoogle Scholar
  80. Luo Z, Cai K, Hu Y, Li J, Ding X, Zhang B, Xu D, Yang W, Liu P (2012) Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv Mater 24:431–435.  https://doi.org/10.1002/adma.201103458CrossRefGoogle Scholar
  81. Mahmoudi M, Sheibani S, Milani AS, Rezaee F, Gauberti M, Dinarvand R, Vali H (2015) Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine 10:215–226.  https://doi.org/10.2217/nnm.14.69CrossRefGoogle Scholar
  82. Mahon E, Hristov DR, Dawson KA (2012) Stabilising fluorescent silica nanoparticles against dissolution effects for biological studies. Chem Commun 48:7970–7972.  https://doi.org/10.1039/C2CC34023BCrossRefGoogle Scholar
  83. Martin L, Bates C, Beresford C, Donaldson J, McDonald F, Dunlop D, Sheard P, London E, Twigg G (1955) The pharmacology of an iron-dextran intramuscular haematinic. Br J Pharmacol 10:375–382.  https://doi.org/10.1111/j.1476-5381.1955.tb00887.xCrossRefGoogle Scholar
  84. Masselli G, Gualdi G (2012) MR imaging of the small bowel. Radiology 264:333–348.  https://doi.org/10.1148/radiol.12111658CrossRefGoogle Scholar
  85. Maurizi L, Sakulkhu U, Gramoun A, Vallee J-P, Hofmann H (2014) A fast and reproducible method to quantify magnetic nanoparticle biodistribution. Analyst 139:1184–1191.  https://doi.org/10.1039/C3AN02153JCrossRefGoogle Scholar
  86. McCormack PL (2012) Ferumoxytol. Drugs 72:2013–2022.  https://doi.org/10.2165/11209880-000000000-00000CrossRefGoogle Scholar
  87. Mejías R, Pérez-Yagüe S, Gutiérrez L, Cabrera LI, Spada R, Acedo P, Serna CJ, Lázaro FJ, Villanueva Á, del Puerto Morales M (2011) Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials 32:2938–2952.  https://doi.org/10.1016/j.biomaterials.2011.01.008CrossRefGoogle Scholar
  88. Mejías R, Gutiérrez L, Salas G, Pérez-Yagüe S, Zotes TM, Lázaro FJ, Morales MP, Barber DF (2013) Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. J Controlled Release 171:225–233.  https://doi.org/10.1016/j.jconrel.2013.07.019CrossRefGoogle Scholar
  89. Melancon MP, Lu W, Li C (2009) Gold-based magneto/optical nanostructures: challenges for in vivo applications in cancer diagnostics and therapy. MRS Bull 34:415–421.  https://doi.org/10.1557/mrs2009.117CrossRefGoogle Scholar
  90. Monge-Fuentes V, Garcia MP, Tavares MCH, Valois CR, Lima EC, Teixeira DS, Morais PC, Tomaz C, Azevedo RB (2011) Biodistribution and biocompatibility of DMSA-stabilized maghemite magnetic nanoparticles in nonhuman primates (Cebus spp.). Nanomedicine 6:1529–1544.  https://doi.org/10.2217/nnm.11.47CrossRefGoogle Scholar
  91. Monopoli MP, Åberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779.  https://doi.org/10.1038/nnano.2012.207CrossRefGoogle Scholar
  92. Montenegro J-M, Grazu V, Sukhanova A, Agarwal S, Jesus M, Nabiev I, Greiner A, Parak WJ (2013) Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv Drug Deliv Rev 65:677–688.  https://doi.org/10.1016/j.addr.2012.12.003CrossRefGoogle Scholar
  93. Moore A, Marecos E, Bogdanov A Jr, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574.  https://doi.org/10.1148/radiology.214.2.r00fe19568CrossRefGoogle Scholar
  94. Morais T, Soares ME, Duarte JA, Soares L, Maia S, Gomes P, Pereira E, Fraga S, Carmo H, de Lourdes Bastos M (2012) Effect of surface coating on the biodistribution profile of gold nanoparticles in the rat. Eur J Pharm Biopharm 80:185–193.  https://doi.org/10.1016/j.ejpb.2011.09.005CrossRefGoogle Scholar
  95. Motoyama S, Ishiyama K, Maruyama K, Narita K, Minamiya Y, Ogawa J-i (2012) Estimating the need for neck lymphadenectomy in submucosal esophageal cancer using superparamagnetic iron oxide-enhanced magnetic resonance imaging: clinical validation study. World J Surg 36:83–89.  https://doi.org/10.1007/s00268-011-1322-1CrossRefGoogle Scholar
  96. Murday JS, Siegel RW, Stein J, Wright JF (2009) “Translational nanomedicine: status assessment and opportunities. Nanomed Nanotechnol Biol Med 5:251–273.  https://doi.org/10.1016/j.nano.2009.06.001CrossRefGoogle Scholar
  97. Nangia S, Sureshkumar R (2012) Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 28:17666–17671CrossRefGoogle Scholar
  98. Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644.  https://doi.org/10.1021/nn800330aCrossRefGoogle Scholar
  99. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949.  https://doi.org/10.1002/smll.200700378CrossRefGoogle Scholar
  100. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076.  https://doi.org/10.1002/smll.200900466CrossRefGoogle Scholar
  101. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15.  https://doi.org/10.1088/0957-4484/14/7/201CrossRefGoogle Scholar
  102. Parween S, Ali A, Chauhan VS (2013) Non-natural amino acids containing peptide-capped gold nanoparticles for drug delivery application. ACS Appl Mater Interfaces 5:6484–6493.  https://doi.org/10.1021/am4017973CrossRefGoogle Scholar
  103. Paulsson M, Krag C, Frederiksen T, Brandbyge M (2008) Conductance of alkanedithiol single-molecule junctions: a molecular dynamics study. Nano Lett 9:117–121.  https://doi.org/10.1021/nl802643hCrossRefGoogle Scholar
  104. Pautler M, Brenner S (2010) Nanomedicine: promises and challenges for the future of public health. Int J Nanomed 5:803.  https://doi.org/10.2147/IJN.S13816CrossRefGoogle Scholar
  105. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751.  https://doi.org/10.1038/nnano.2007.387CrossRefGoogle Scholar
  106. Pelaz B, Charron G, Pfeiffer C, Zhao Y, De La Fuente JM, Liang XJ, Parak WJ, Del Pino P (2013) Interfacing engineered nanoparticles with biological systems: anticipating adverse nano–bio interactions. Small 9:1573–1584.  https://doi.org/10.1002/smll.201201229CrossRefGoogle Scholar
  107. Pillai S, Cariappa A (2009) The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol 9:767–777.  https://doi.org/10.1038/nri2656CrossRefGoogle Scholar
  108. Prabhu P, Patravale V (2012) The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol 8:859–882.  https://doi.org/10.1166/jbn.2012.1459CrossRefGoogle Scholar
  109. Pujals S, Bastús NG, Pereiro E, López-Iglesias C, Puntes VF, Kogan MJ, Giralt E (2009) Shuttling gold nanoparticles into tumoral cells with an amphipathic proline-rich peptide. ChemBioChem 10:1025–1031.  https://doi.org/10.1002/cbic.200800843CrossRefGoogle Scholar
  110. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48:872–897.  https://doi.org/10.1002/anie.200802585CrossRefGoogle Scholar
  111. Rivera-Gil P, Jimenez De Aberasturi D, Wulf V, Pelaz B, Del Pino P, Zhao Y, De La Fuente JM, Ruiz De Larramendi I, Rojo Tf, Liang X-J (2012) The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res 46:743–749.  https://doi.org/10.1021/ar300039jCrossRefGoogle Scholar
  112. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T (2013) Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 24:1159–1166.  https://doi.org/10.2147/IJN.S30320CrossRefGoogle Scholar
  113. Roca AG, Veintemillas-Verdaguer S, Port M, Robic C, Serna CJ, Morales MP (2009) Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. J Phys Chem B 113:7033–7039.  https://doi.org/10.1021/jp807820sCrossRefGoogle Scholar
  114. Roohi F, Lohrke J, Ide A, Schütz G, Dassler K (2012) Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Int J Nanomed 7:4447.  https://doi.org/10.2147/IJN.S33120CrossRefGoogle Scholar
  115. Sadauskas E, Jacobsen NR, Danscher G, Stoltenberg M, Vogel U, Larsen A, Kreyling W, Wallin H (2009) Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. Chem Cent J 3:16.  https://doi.org/10.1186/1752-153X-3-16CrossRefGoogle Scholar
  116. Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:26.  https://doi.org/10.1186/1477-3155-11-26CrossRefGoogle Scholar
  117. Schiller B, Bhat P, Sharma A (2014) Safety and effectiveness of ferumoxytol in hemodialysis patients at 3 dialysis chains in the United States over a 12-month period. Clin Ther 36:70–83.  https://doi.org/10.1016/j.clinthera.2013.09.028CrossRefGoogle Scholar
  118. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdisc Rev Nanomed Nanobiotechnol 2:544–568.  https://doi.org/10.1002/wnan.103CrossRefGoogle Scholar
  119. Sée V, Free P, Cesbron Y, Nativo P, Shaheen U, Rigden DJ, Spiller DG, Fernig DG, White MR, Prior IA (2009) Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano 3:2461–2468.  https://doi.org/10.1021/nn9006994CrossRefGoogle Scholar
  120. Seeney C, Ojwang JO, Weiss RD, Klostergaard J (2012) Magnetically vectored platforms for the targeted delivery of therapeutics to tumors: history and current status. Nanomedicine 7:289–299.  https://doi.org/10.2217/nnm.11.183CrossRefGoogle Scholar
  121. Selvan S, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem 119:2500–2504.  https://doi.org/10.1002/ange.200604245CrossRefGoogle Scholar
  122. Setyawati MI, Tay CY, Docter D, Stauber RH, Leong DT (2015) Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem Soc Rev 44:8174–8199.  https://doi.org/10.1039/C5CS00499CCrossRefGoogle Scholar
  123. Shang L, Azadfar N, Stockmar F, Send W, Trouillet V, Bruns M, Gerthsen D, Nienhaus GU (2011) One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 7:2614–2620.  https://doi.org/10.1002/smll.201100746CrossRefGoogle Scholar
  124. Simberg D, Park J-H, Karmali PP, Zhang W-M, Merkulov S, McCrae K, Bhatia SN, Sailor M, Ruoslahti E (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30:3926–3933.  https://doi.org/10.1016/j.biomaterials.2009.03.056CrossRefGoogle Scholar
  125. Soenen SJ, Parak WJ, Rejman J, Manshian B (2015) (Intra) cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115:2109–2135.  https://doi.org/10.1021/cr400714jCrossRefGoogle Scholar
  126. Soman N, Marsh J, Lanza G, Wickline S (2008) New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles. Nanotechnology 19:185102.  https://doi.org/10.1088/0957-4484/19/18/185102CrossRefGoogle Scholar
  127. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf, B 66:274–280.  https://doi.org/10.1016/j.colsurfb.2008.07.004CrossRefGoogle Scholar
  128. Song Y, Xu X, MacRenaris KW, Zhang XQ, Mirkin CA, Meade TJ (2009) Multimodal Gadolinium-enriched DNA–Gold nanoparticle conjugates for cellular imaging. Angew Chem Int Ed 48:9143–9147.  https://doi.org/10.1002/anie.200904666CrossRefGoogle Scholar
  129. Song Y, Shi W, Chen W, Li X, Ma H (2012) Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem 22:12568–12573.  https://doi.org/10.1039/C2JM31582CCrossRefGoogle Scholar
  130. Tate JA, Petryk AA, Giustini AJ, Hoopes Pj (2011) In vivo biodistribution of iron oxide nanoparticles: an overview. In: Energy-based treatment of tissue and assessment VI, 2011. International society for optics and photonics, p 790117.  https://doi.org/10.1117/12.876414
  131. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772.  https://doi.org/10.1038/nnano.2013.181CrossRefGoogle Scholar
  132. Thomas M, Klibanov A (2003) Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 62:27–34.  https://doi.org/10.1007/s00253-003-1321-8CrossRefGoogle Scholar
  133. Tomanek B, Iqbal U, Blasiak B, Abulrob A, Albaghdadi H, Matyas JR, Ponjevic D, Sutherland GR (2011) Evaluation of brain tumor vessels specific contrast agents for glioblastoma imaging. Neuro-Oncol 14:53–63.  https://doi.org/10.1093/neuonc/nor183CrossRefGoogle Scholar
  134. Tong S, Hou S, Zheng Z, Zhou J, Bao G (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10:4607–4613.  https://doi.org/10.1021/nl102623xCrossRefGoogle Scholar
  135. Torres Martin de Rosales R, Tavaré R, Glaria A, Varma G, Protti A, Blower PJ (2011) “99mTc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 22:455–465.  https://doi.org/10.1021/bc100483k
  136. Urban DA, Milosevic AM, Bossert D, Crippa F, Moore TL, Geers C, Balog S, Rothen-Rutishauser B, Petri-Fink A (2018) Taylor dispersion of inorganic nanoparticles and comparison to dynamic light scattering and transmission electron microscopy. Colloid Interface Sci Commun 22:29–33.  https://doi.org/10.1016/j.colcom.2017.12.001CrossRefGoogle Scholar
  137. Van Beers BE, Sempoux C, Materne R, Delos M, Smith AM (2001) Biodistribution of ultrasmall iron oxide particles in the rat liver. J Magn Reson Imaging 13:594–599.  https://doi.org/10.1002/jmri.1083CrossRefGoogle Scholar
  138. Wada S, Yue L, Tazawa K, Furuta I, Nagae H, Takemori S, Minamimura T (2001) New local hyperthermia using dextran magnetite complex (DM) for oral cavity: experimental study in normal hamster tongue. Oral Dis 7:192–195.  https://doi.org/10.1034/j.1601-0825.2001.70309.xCrossRefGoogle Scholar
  139. Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M (2002) Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 37:167–177CrossRefGoogle Scholar
  140. Wahajuddin SA (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 7:3445.  https://doi.org/10.2147/IJN.S30320CrossRefGoogle Scholar
  141. Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799.  https://doi.org/10.1039/C1CS15233ECrossRefGoogle Scholar
  142. Wan S, Kelly PM, Mahon E, Stöckmann H, Rudd PM, Caruso F, Dawson KA, Yan Y, Monopoli MP (2015) The “sweet” side of the protein corona: effects of glycosylation on nanoparticle–cell interactions. ACS Nano 9:2157–2166.  https://doi.org/10.1021/nn506060qCrossRefGoogle Scholar
  143. Wang Y, Gu H (2015) Core–shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv Mater 27:576–585.  https://doi.org/10.1002/adma.201401124CrossRefGoogle Scholar
  144. Wang Y-XJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331.  https://doi.org/10.1007/s003300100908CrossRefGoogle Scholar
  145. Wang G, Inturi S, Serkova NJ, Merkulov S, McCrae K, Russek SE, Banda NK, Simberg D (2014) High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties. ACS Nano 8:12437–12449.  https://doi.org/10.1021/nn505126bCrossRefGoogle Scholar
  146. Wang Z, Xie D, Liu H, Bao Z, Wang Y (2016) Toxicity assessment of precise engineered gold nanoparticles with different shapes in zebrafish embryos. RSC Adv 6:33009–33013.  https://doi.org/10.1039/C6RA00632ACrossRefGoogle Scholar
  147. Webster TJ (2013) Interview: nanomedicine: past, present and future. Nanomedicine 8:525–529.  https://doi.org/10.2217/NNM.13.37CrossRefGoogle Scholar
  148. Wei H, Bruns OT, Chen O, Bawendi MG (2013) Compact zwitterion-coated iron oxide nanoparticles for in vitro and in vivo imaging. Integr Biol 5:108–114.  https://doi.org/10.1039/C2IB20142ACrossRefGoogle Scholar
  149. Weishaupt D, Hilfiker PR, Schmidt M, Debatin JF (1999) Pulmonary hemorrhage: imaging with a new magnetic resonance blood pool agent in conjunction with breathheld three-dimensional magnetic resonance angiography. Cardiovasc Intervent Radiol 22:321–325.  https://doi.org/10.1007/s002709900396CrossRefGoogle Scholar
  150. Weissleder Ra DD, Stark BL Engelstad, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152:167–173.  https://doi.org/10.2214/ajr.152.1.167CrossRefGoogle Scholar
  151. Weissleder R, Elizondo G, Wittenberg J, Lee A, Josephson L, Brady T (1990a) Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175:494–498.  https://doi.org/10.1148/radiology.175.2.2326475CrossRefGoogle Scholar
  152. Weissleder R, Elizondo G, Wittenberg J, Rabito C, Bengele H, Josephson L (1990b) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493.  https://doi.org/10.1148/radiology.175.2.2326474CrossRefGoogle Scholar
  153. Weissleder R, Bogdanov A, Neuwelt EA, Papisov M (1995) Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev 16:321–334.  https://doi.org/10.1016/0169-409X(95)00033-4CrossRefGoogle Scholar
  154. Xia X-R, Monteiro-Riviere NA, Riviere JE (2010) An index for characterization of nanomaterials in biological systems. Nat Nanotechnol 5:671.  https://doi.org/10.1038/nnano.2010.164CrossRefGoogle Scholar
  155. Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32:9364–9373.  https://doi.org/10.1016/j.biomaterials.2011.08.053CrossRefGoogle Scholar
  156. Yang H-W, Hua M-Y, Liu H-L, Tsai R-Y, Chuang C-K, Chu P-C, Wu P-Y, Chang Y-H, Chuang H-C, Yu K-J (2012) Cooperative dual-activity targeted nanomedicine for specific and effective prostate cancer therapy. ACS Nano 6:1795–1805.  https://doi.org/10.1021/nn2048526CrossRefGoogle Scholar
  157. Yang L, Kuang H, Zhang W, Aguilar ZP, Xiong Y, Lai W, Xu H, Wei H (2015) Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale 7:625–636.  https://doi.org/10.1039/C4NR05061DCrossRefGoogle Scholar
  158. Yang C, Tian A, Li Z (2016) Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Sci Rep 6:20203.  https://doi.org/10.1038/srep20203CrossRefGoogle Scholar
  159. Zeng J, Jing L, Hou Y, Jiao M, Qiao R, Jia Q, Liu C, Fang F, Lei H, Gao M (2014) Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: towards high performance MRI contrast agents. Adv Mater 26:2694–2698.  https://doi.org/10.1002/adma.201304744CrossRefGoogle Scholar
  160. Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30:1928–1936.  https://doi.org/10.1016/j.biomaterials.2008.12.038CrossRefGoogle Scholar
  161. Zhang F, Ali Z, Amin F, Feltz A, Oheim M, Parak WJ (2010) Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. ChemPhysChem 11:730–735.  https://doi.org/10.1002/cphc.200900849CrossRefGoogle Scholar
  162. Zhuang J, Fan K, Gao L, Lu D, Feng J, Yang D, Gu N, Zhang Y, Liang M, Yan X (2012) Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. Mol Pharm 9:1983–1989.  https://doi.org/10.1021/mp300033aCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kanwal Akhtar
    • 1
  • Yasir Javed
    • 1
    Email author
  • Naveed A. Shad
    • 2
  • Navadeep Shrivastava
    • 3
  • S. K. Sharma
    • 4
  1. 1.Magnetic Materials Laboratory, Department of PhysicsUniversity of AgricultureFaisalabadPakistan
  2. 2.Department of PhysicsGovernment College University FaisalabadFaisalabadPakistan
  3. 3.Institute of Physics, Federal University of GoiasGoiania-GOBrazil
  4. 4.Department of Physics, Faculty of Science and TechnologyThe University of the West IndiesSaint AugustineTrinidad and Tobago

Personalised recommendations