Thermal Response of Iron Oxide and Metal-Based Iron Oxide Nanoparticles for Magnetic Hyperthermia

  • M. Zubair Sultan
  • Yasir JamilEmail author
  • Yasir Javed
  • S. K. Sharma
  • M. Shoaib Tahir
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


Magnetic nanoparticles have been extensively in the biomedical field as drug delivery agent, diagnosis of different diseases and more recently in the treatment of different types of cancer. Majority of these studies reported the use of iron oxide nanoparticles or formulation contains at least iron in most of magnetic-based nanosystems. Focus on iron oxide nanoparticles is mainly due to their superparamagnetic nature at nanoscale and other features such as higher surface to volume ratio, biocompatibility and low toxicity. For further improvement in their properties, doping with different transition metal elements is also under investigations. This chapter covers most commonly used types of iron oxide NPs, behavior with few doping metals in iron oxide nanoparticles and their synthesis protocols through different physical and chemical methods. Finally, heat generation mechanisms responsible for localized heat in tissues have been discussed.


Metal-based iron oxide Wet chemical synthesis Ferrofluid Heat generation Localized heating 


  1. Abu-Much R, Gedanken A (2008) Sonochemical synthesis under a magnetic field: structuring magnetite nanoparticles and the destabilization of a colloidal magnetic aqueous solution under a magnetic field. J Phys Chem C 112(1):35–42CrossRefGoogle Scholar
  2. Adeleye AS et al (2018) Influence of nanoparticle doping on the colloidal stability and toxicity of copper oxide nanoparticles in synthetic and natural waters. Water Res 132:12–22CrossRefGoogle Scholar
  3. Aghazadeh M, Maragheh MG, Norouzi P (2018) Enhancing the supercapacitive properties of iron oxide electrode through Cu2+-doping: cathodic electrosynthesis and characterization. Int J Electrochem Sci 13(2):1355–1366CrossRefGoogle Scholar
  4. Ai Z et al (2010) Facile microwave-assisted synthesis and magnetic and gas sensing properties of Fe3O4 nanoroses. J Phys Chem C 114(14):6237–6242CrossRefGoogle Scholar
  5. Ali A et al (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49CrossRefGoogle Scholar
  6. Amara D, Grinblat J, Margel S (2012) Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J Mater Chem 22(5):2188–2195CrossRefGoogle Scholar
  7. Andrä W, Nowak H (2007) Magnetism in medicine: a handbook. WileyGoogle Scholar
  8. Anjum S et al (2017) Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles. J Magn Magn Mater 432:198–207CrossRefGoogle Scholar
  9. Anthony JW et al (1990) Handbook of mineralogy, vol 1. Mineral Data Publ. TucsonGoogle Scholar
  10. Anthony J et al (2017) Handbook of mineralogy. Chantilly (VA), mineralogical society of AmericaGoogle Scholar
  11. Arachchige MP et al (2017) Functionalized nanoparticles enable tracking the rapid entry and release of doxorubicin in human pancreatic cancer cells. Micron 92:25–31CrossRefGoogle Scholar
  12. Ba-Abbad MM et al (2017) Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol–gel technique and their photocatalytic activity. J Sol-Gel Sci Technol 81(3):880–893CrossRefGoogle Scholar
  13. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22(10):1039–1059CrossRefGoogle Scholar
  14. Basti H et al (2014) Size tuned polyol-made Zn0. 9M0. 1Fe2O4 (M = Mn, Co, Ni) ferrite nanoparticles as potential heating agents for magnetic hyperthermia: from synthesis control to toxicity survey. Mater Res Exp 1(4):045047Google Scholar
  15. Batsaikhan E et al (2015) Development of ferromagnetic superspins in bare Cu nanoparticles by electronic charge redistribution. Int J Mol Sci 16(10):23165–23176CrossRefGoogle Scholar
  16. Boxall C, Kelsall G, Zhang Z (1996) Photoelectrophoresis of colloidal iron oxides. Part 2.—magnetite (Fe3O4). J Chem Soc Faraday Trans 92(5):791–802Google Scholar
  17. Brown WF (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130(5):1677–1686CrossRefGoogle Scholar
  18. Burrows F et al (2010) Energy losses in interacting fine-particle magnetic composites. J Phys D Appl Phys 43(47):474010CrossRefGoogle Scholar
  19. Cai L et al (2014) The effect of doping transition metal oxides on copper manganese oxides for the catalytic oxidation of CO. Chin J Catal 35(2):159–167CrossRefGoogle Scholar
  20. Cao F et al (2007) Synthesis of carbon–Fe3O4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide. Carbon 45(4):727–731CrossRefGoogle Scholar
  21. Cao M et al (2012) Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci Technol 27(1):47–56CrossRefGoogle Scholar
  22. Casula MF et al (2016) Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia. Phys Chem Chem Phys 18(25):16848–16855CrossRefGoogle Scholar
  23. Céspedes E et al (2014) Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications. Nanoscale 6(21):12958–12970CrossRefGoogle Scholar
  24. Chakrabarti S, Mandal S, Chaudhuri S (2005) Cobalt doped γ-Fe2O3 nanoparticles: synthesis and magnetic properties. Nanotechnology 16(4):506CrossRefGoogle Scholar
  25. Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett 2(9):1003–1007CrossRefGoogle Scholar
  26. Chen M et al (2016) Inhibitory effect of magnetic Fe3O4 nanoparticles coloaded with homoharringtonine on human leukemia cells in vivo and in vitro. Int J Nanomed 11:4413CrossRefGoogle Scholar
  27. Confalonieri GB et al (2011) Template-assisted self-assembly of individual and clusters of magnetic nanoparticles. Nanotechnology 22(28):285608CrossRefGoogle Scholar
  28. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and usesGoogle Scholar
  29. Daoush W (2017) Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications. J Nanomed Res 5(1):e6Google Scholar
  30. de la Venta J et al (2007) Magnetism in polymers with embedded gold nanoparticles. Adv Mater 19(6):875–877CrossRefGoogle Scholar
  31. Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172CrossRefGoogle Scholar
  32. Deissler RJ, Wu Y, Martens MA (2014) Dependence of Brownian and Néel relaxation times on magnetic field strength. Med Phys 41(1):012301CrossRefGoogle Scholar
  33. Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperth 29(8):790–800CrossRefGoogle Scholar
  34. Espinosa A et al (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10(2):2436–2446CrossRefGoogle Scholar
  35. Feldheim D, Foss C (2002) Metal nanoparticles: synthesis, characterization, and applications. Dekker, New YorkGoogle Scholar
  36. Feng H et al (2018) Cu-Doped Fe@ Fe2O3 core–shell nanoparticle shifted oxygen reduction pathway for high-efficiency arsenic removal in smelting wastewater. Environ Sci Nano 5(7):1595–1607CrossRefGoogle Scholar
  37. Fernández-Barahona I et al (2019) Cu-doped extremely small iron oxide nanoparticles with large longitudinal relaxivity: one-pot synthesis and in vivo targeted molecular imaging. ACS Omega 4(2):2719–2727CrossRefGoogle Scholar
  38. Fortin J-P et al (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635CrossRefGoogle Scholar
  39. Garcia M et al (2007) Magnetic properties of ZnO nanoparticles. Nano Lett 7(6):1489–1494CrossRefGoogle Scholar
  40. Garitaonandia JS et al (2008) Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett 8(2):661–667CrossRefGoogle Scholar
  41. Ge S et al (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113(31):13593–13599CrossRefGoogle Scholar
  42. Gubin SP et al (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74(6):489CrossRefGoogle Scholar
  43. Gupta AK et al (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applicationsGoogle Scholar
  44. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRefGoogle Scholar
  45. Gupta J et al (2018) Superparamagnetic iron oxide-reduced graphene oxide nanohybrid-a vehicle for targeted drug delivery and hyperthermia treatment of cancer. J Magn Magn Mater 448:332–338CrossRefGoogle Scholar
  46. Hanini A et al (2016) Zinc substituted ferrite nanoparticles with Zn0. 9Fe2. 1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. J Magn Magn Mater 416:315–320Google Scholar
  47. Hanini A et al (2016) Thermosensitivity profile of malignant glioma U87-MG cells and human endothelial cells following γ-Fe2O3 NPs internalization and magnetic field application. RSC Adv 6(19):15415–15423CrossRefGoogle Scholar
  48. Haribabu V et al (2016) Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. J Biomed Mater Res B Appl Biomater 104(4):817–824CrossRefGoogle Scholar
  49. Henam SD et al (2019) Microwave synthesis of nanoparticles and their antifungal activities. Spectrochim Acta Part A Mol Biomol Spectrosc 213:337–341CrossRefGoogle Scholar
  50. Hergt R et al (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter 18(38):S2919Google Scholar
  51. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20(38):385214Google Scholar
  52. Hiergeist R et al (1999) Application of magnetite ferrofluids for hyperthermia. J Magn Magn Mater 201(1–3):420–422CrossRefGoogle Scholar
  53. Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7(9):1443–1459CrossRefGoogle Scholar
  54. Hu X et al (2007) α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater 19(17):2324–2329CrossRefGoogle Scholar
  55. Hu M, Jiang J-S, Zeng Y (2010) Prussian blue microcrystals prepared by selective etching and their conversion to mesoporous magnetic iron (III) oxides. Chem Commun 46(7):1133–1135CrossRefGoogle Scholar
  56. Hu M et al (2012) Hierarchical magnetic iron (III) oxides prepared by solid-state thermal decomposition of coordination polymers. RSC Adv 2(11):4782–4786CrossRefGoogle Scholar
  57. Huang H et al (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13(2):172–175CrossRefGoogle Scholar
  58. Huang H et al (2019) Pulsed laser ablation of bulk target and particle products in liquid for nanomaterial fabrication. AIP Adv 9(1):015307CrossRefGoogle Scholar
  59. Ibrahim E et al (2018) Electric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexes. Mater Res Bull 99:103–108CrossRefGoogle Scholar
  60. Iwamoto T, Ishigaki T (2013) Fabrication of iron oxide nanoparticles using laser ablation in liquids. J Phys Conf SerGoogle Scholar
  61. Javed Y, Ali K, Jamil Y (2017) Magnetic nanoparticle-based hyperthermia for cancer treatment: factors affecting heat generation efficiency. In: Complex magnetic nanostructures. Springer, Berlin, pp 393–424Google Scholar
  62. Jiang F et al (2010) Synthesis of iron oxide nanocubes via microwave-assisted solvolthermal method. J Alloy Compd 503(2):L31–L33CrossRefGoogle Scholar
  63. Kandasamy G et al (2018a) Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J Mol Liq 256:224–237CrossRefGoogle Scholar
  64. Kandasamy G et al (2018b) Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS Omega 3(4):3991–4005CrossRefGoogle Scholar
  65. Kang YS et al (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8(9):2209–2211CrossRefGoogle Scholar
  66. Karna SK et al (2011) Observations of large magnetic moments in icosahedral Pb nanoparticles. J Phys Chem C 115(18):8906–8910CrossRefGoogle Scholar
  67. Kuchma E, Kubrin S, Soldatov A (2018) The local atomic structure of colloidal superparamagnetic iron oxide nanoparticles for theranostics in oncology. Biomedicines 6(3):78CrossRefGoogle Scholar
  68. Lasemi N et al (2018) Laser-assisted synthesis of colloidal FeWxOy and Fe/FexOy nanoparticles in water and ethanol. ChemPhysChem 19(11):1414–1419CrossRefGoogle Scholar
  69. Laurent S et al (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Coll Interface Sci 166(1–2):8–23CrossRefGoogle Scholar
  70. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589CrossRefGoogle Scholar
  71. Liang X et al (2006) Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Func Mater 16(14):1805–1813CrossRefGoogle Scholar
  72. Lim J, Majetich SA (2013) Composite magnetic–plasmonic nanoparticles for biomedicine: manipulation and imaging. Nano Today 8(1):98–113CrossRefGoogle Scholar
  73. Lin M, Huang J, Sha M (2014) Recent advances in nanosized Mn–Zn ferrite magnetic fluid hyperthermia for cancer treatment. J Nanosci Nanotechnol 14(1):792–802CrossRefGoogle Scholar
  74. Litrán R et al (2006) Magnetic and microstructural analysis of palladium nanoparticles with different capping systems. Phys Rev B 73(5):054404CrossRefGoogle Scholar
  75. Liu M-S et al (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49(17–18):3028–3033CrossRefGoogle Scholar
  76. Maity D et al (2009) Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J Magn Magn Mater 321(9):1256–1259CrossRefGoogle Scholar
  77. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248CrossRefGoogle Scholar
  78. Mazario E et al (2017) Functionalization of iron oxide nanoparticles with HSA protein for thermal therapy. IEEE Trans Magn 53(11):1–5CrossRefGoogle Scholar
  79. Mohanraj K, Sivakumar G (2017) Synthesis of γ-Fe2O3, Fe3O4 and copper doped Fe3O4 nanoparticles by sonochemical method. Sains Malaysiana 46(10):1935–1942CrossRefGoogle Scholar
  80. Morel A-L et al (2008) Sonochemical approach to the synthesis of Fe3O4@ SiO2 core-shell nanoparticles with tunable properties. ACS Nano 2(5):847–856CrossRefGoogle Scholar
  81. Mukh-Qasem RA, Gedanken A (2005) Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J Colloid Interface Sci 284(2):489–494CrossRefGoogle Scholar
  82. Néel L (1950) Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh. J Phys Radium 11(2):49–61CrossRefGoogle Scholar
  83. Néel L, Kurti N (1988) Selected works of Louis Néel. Gordon and Breach Science Publ, New YorkGoogle Scholar
  84. Neuberger T et al (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496CrossRefGoogle Scholar
  85. Niemirowicz K et al (2012) Magnetic nanoparticles as new diagnostic tools in medicine. Adv Med Sci 57(2):196–207CrossRefGoogle Scholar
  86. Obaidat I, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5(1):63–89CrossRefGoogle Scholar
  87. O’Hara MJ et al (2016) Magnetic iron oxide and manganese-doped iron oxide nanoparticles for the collection of alpha-emitting radionuclides from aqueous solutions. RSC Adv 6(107):105239–105251CrossRefGoogle Scholar
  88. Pankhurst Q et al (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22):224001CrossRefGoogle Scholar
  89. Park J et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891CrossRefGoogle Scholar
  90. Pascal C et al (1999) Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11(1):141–147Google Scholar
  91. Punitha S, Nehru L (2018) Direct synthesis of iron oxide (α-Fe2O3) nanoparticles by the combustion approach. Adv Sci Lett 24(8):5608–5610CrossRefGoogle Scholar
  92. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117CrossRefGoogle Scholar
  93. Qiu G et al (2011) Microwave-assisted hydrothermal synthesis of nanosized α-Fe2O3 for catalysts and adsorbents. J Phys Chem C 115(40):19626–19631CrossRefGoogle Scholar
  94. Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 49(2):137–152CrossRefGoogle Scholar
  95. Rajabi A et al (2019) Synthesis, characterization, and antibacterial activity of Ag2O-loaded polyethylene terephthalate fabric via ultrasonic method. Nanomaterials 9(3):450CrossRefGoogle Scholar
  96. Ramprasad R et al (2004) Magnetic properties of metallic ferromagnetic nanoparticle composites. J Appl Phys 96(1):519–529CrossRefGoogle Scholar
  97. Raveendran S, Kannan S (2019) Polymorphism and phase transitions in t-ZrO2/CoFe2O4 composite structures: impact of composition and heat treatments. Cryst Growth Des 19(8):4710–4720CrossRefGoogle Scholar
  98. Riviere C et al (2006) Nano-systems for medical applications: biological detection, drug delivery, diagnosis and therapy. Annales de Chimie 31(3):351–367CrossRefGoogle Scholar
  99. Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121(49):11595–11596CrossRefGoogle Scholar
  100. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374CrossRefGoogle Scholar
  101. Sayed FN, Polshettiwar V (2015) Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides. Sci Rep 5:9733CrossRefGoogle Scholar
  102. Sequeira CA (2018) Electrochemical synthesis of iron oxide nanoparticles for biomedical application. Org Med Chem Int J 5(2):1–12Google Scholar
  103. Shatnawi M et al (2016) Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles. Res Phys 6:1064–1071Google Scholar
  104. Shen S et al (2015) Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39:67–74CrossRefGoogle Scholar
  105. Shreshtha P, Mohite S, Jadhav M (2015) Review on thermal seeds in magnetic hyperthermia therapy. IJITR 3(4):2283–2287Google Scholar
  106. Sibokoza S et al (2017) The effect of temperature and precursor concentration on the synthesis of cobalt sulphide nanoparticles using cobalt diethyldithiocarbamate complex. Chalcogenide Lett 14(2)Google Scholar
  107. Singh H et al (2018) Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. J Photochem Photobiol, B 185:100–110CrossRefGoogle Scholar
  108. Skoropata E et al (2014) Intra-and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage. Phys Rev B 90(17):174424CrossRefGoogle Scholar
  109. Sreeja V, Joy P (2007) Microwave–hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mater Res Bull 42(8):1570–1576CrossRefGoogle Scholar
  110. Thanh NT (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC pressGoogle Scholar
  111. Theerdhala S et al (2010) Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications. Ultrason Sonochem 17(4):730–737CrossRefGoogle Scholar
  112. Venkatesan K et al (2015) Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications. Int J Nanomed 10(Suppl 1):189Google Scholar
  113. Veverka M et al (2014) Magnetic heating by silica-coated Co–Zn ferrite particles. J Phys D Appl Phys 47(6):065503CrossRefGoogle Scholar
  114. Vitulli G et al (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14(3):1183–1186CrossRefGoogle Scholar
  115. Wahab A et al (2019) Dye degradation property of cobalt and manganese doped iron oxide nanoparticles. Appl Nanosci 1–10Google Scholar
  116. Wang M-H et al (2010) Fabrication of large-scale one-dimensional Au nanochain and nanowire networks by interfacial self-assembly. Mater Chem Phys 119(1–2):153–157CrossRefGoogle Scholar
  117. Wang Y et al (2012) One-pot reaction to synthesize superparamagnetic iron oxide nanoparticles by adding phenol as reducing agent and stabilizer. J Nanopart Res 14(4):755CrossRefGoogle Scholar
  118. Warner CL et al (2012) Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 28(8):3931–3937CrossRefGoogle Scholar
  119. Wijaya A et al (2007) Magnetic field heating study of Fe-doped Au nanoparticles. J Magn Magn Mater 309(1):15–19CrossRefGoogle Scholar
  120. Wolf S et al (2001) Spintronics: a spin-based electronics vision for the future. Science 294(5546):1488–1495CrossRefGoogle Scholar
  121. Wong RM et al (2012) Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 6(4):3461–3467CrossRefGoogle Scholar
  122. Wu W et al (2007) Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles. Nanotechnology 18(14):145609CrossRefGoogle Scholar
  123. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397CrossRefGoogle Scholar
  124. Wu W et al (2010) Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J Phys Chem C 114(39):16092–16103CrossRefGoogle Scholar
  125. Wu S et al (2011a) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884CrossRefGoogle Scholar
  126. Wu L et al (2011b) Unique lamellar sodium/potassium iron oxide nanosheets: facile microwave-assisted synthesis and magnetic and electrochemical properties. Chem Mater 23(17):3946–3952CrossRefGoogle Scholar
  127. Wu W et al (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501CrossRefGoogle Scholar
  128. Yang L et al (2008) Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol 4(4):439–449CrossRefGoogle Scholar
  129. Zhang Z, Boxall C, Kelsall G (1993) Photoelectrophoresis of colloidal iron oxides 1. Hematite (α-Fe2O3). In: Colloids in the aquatic environment. Elsevier, pp 145–163Google Scholar
  130. Zhang X et al (2010) Role of Néel and Brownian relaxation mechanisms for water-based Fe3O4 nanoparticle ferrofluids in hyperthermia. Biomed Eng Appl Basis Commun 22(05):393–399CrossRefGoogle Scholar
  131. Zhang S et al (2012) Sonochemical formation of iron oxide nanoparticles in ionic liquids for magnetic liquid marble. Phys Chem Chem Phys 14(15):5132–5138CrossRefGoogle Scholar
  132. Zhang D et al (2018) Magnetic Fe@ FeOx, Fe@ C and α-Fe2O3 single-crystal nanoblends synthesized by femtosecond laser ablation of fe in acetone. Nanomaterials 8(8):631CrossRefGoogle Scholar
  133. Zhou Z et al (2014) Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35(26):7470–7478CrossRefGoogle Scholar
  134. Zhu S et al (2013) Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrason Sonochem 20(3):872–880CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Zubair Sultan
    • 1
  • Yasir Jamil
    • 1
    Email author
  • Yasir Javed
    • 2
  • S. K. Sharma
    • 3
  • M. Shoaib Tahir
    • 1
  1. 1.Laser Spectroscopy Lab, Department of PhysicsUniversity of Agriculture FaisalabadFaisalabadPakistan
  2. 2.Magnetic Materials Lab, Department of PhysicsUniversity of Agriculture FaisalabadFaisalabadPakistan
  3. 3.Department of Physics, Faculty of Science and TechnologyThe University of the West IndiesSaint AugustineTrinidad and Tobago

Personalised recommendations