Advertisement

Liquid-Phase Synthesis of Multifunctional Nanomaterials: A Recent Update

  • Gopal Niraula
  • Navadeep ShrivastavaEmail author
  • Kanwal Akhtar
  • Yasir Javed
  • J. A. H. Coaquira
  • S. K. SharmaEmail author
Chapter
  • 44 Downloads
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

The design of novel materials is a fundamental focal point of material science research. Nanomaterials less than 100 nm in size have attracted significant interest over several decades due to their unique properties led by surface effect and finite size effect. Colloidal chemistry plays a key role in the controlled production of different classes of nanoparticles, thus being a subject of growing interest in several fields of materials, inorganic, physical chemistry, biophysics, and biomedical. Therefore, in this chapter, we sought to present an introductory outline of liquid-phase synthesis, nucleation, and growth mechanism of nanomaterials focusing on the magnetic nanoparticles. As per the broadness of this book, special attention was devoted to nanoparticles based on iron oxide and rare earth compounds, due to their rapid flourishing importance in biomedical field. Therefore, the work presents ideas involved in the most commonly applied methodologies for the liquid-phase synthesis of nanoparticles, such as co-precipitations and hydro/solvothermal techniques, as well as precipitations into nanoreactors based on reverse microemulsions, with a brief survey of the main advances in these fields in recent years. We have thoroughly presented the synthesis routes of several hybrid nanostructures such as magnetic silica/carbon, magnetic luminescence, magneto-plasmonics, and others. At last, the importance of surface modification and further bio-conjugation has been discussed.

Keywords

Liquid-phase synthesis Multifunctional nanoparticles Nucleation and growth Post-synthesis chemistry 

Notes

Acknowledgements

GN is thankful to Brazilian funding agencies CAPES, CNPq and FAPEMA, NS to CNPq, Brazil, for postdoctoral fellowship.

References

  1. Adschiri Tadafumi, Yukiya Hakuta A, Arai K (2000) Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind Eng Chem Res 39:4901–4907.  https://doi.org/10.1021/ie0003279CrossRefGoogle Scholar
  2. Agrawal A, Zhang C, Byassee T, Ralph A, Tripp A, Nie Shuming (2006) Counting Single Native Biomolecules and Intact Viruses with Color-Coded Nanoparticles. Anal Chem 78:1061–1070.  https://doi.org/10.1021/ac051801tCrossRefGoogle Scholar
  3. Aivazoglou E, Metaxa E, Hristoforou E (2018) Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment. AIP Adv 8:048201.  https://doi.org/10.1063/1.4994057CrossRefGoogle Scholar
  4. Alharbi KK, Al-sheikh YA (2014) Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J Biol Sci 21:109–117.  https://doi.org/10.1016/j.sjbs.2013.11.001CrossRefGoogle Scholar
  5. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 80:271:933–937.  https://doi.org/10.1126/science.271.5251.933
  6. Amara D, Grinblat J, Margel S (2012) Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J Mater Chem 22:2188–2195.  https://doi.org/10.1039/c1jm13942hCrossRefGoogle Scholar
  7. And CRV, Zhang ZJ (2003) Effects of Surface Coordination Chemistry on the Magnetic Properties of MnFe2O4 Spinel Ferrite Nanoparticles. J Am Chem Soc 125:9828–9833.  https://doi.org/10.1021/ja035474nCrossRefGoogle Scholar
  8. Aubin-Tam M-E, Hamad-Schifferli K (2008) Structure and function of nanoparticle–protein conjugates. Biomed Mater 3:034001.  https://doi.org/10.1088/1748-6041/3/3/034001CrossRefGoogle Scholar
  9. Bae H, Ahmad T, Rhee I, Chang Y, Jin S-U, Hong S (2012) Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett 7:44.  https://doi.org/10.1186/1556-276x-7-44CrossRefGoogle Scholar
  10. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070.  https://doi.org/10.1021/nl071546nCrossRefGoogle Scholar
  11. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chemie Int Ed 50:11312–11359.  https://doi.org/10.1002/anie.201101274CrossRefGoogle Scholar
  12. Bandhu A, Mukherjee S, Acharya S, Modak S, Brahma SK, Das D, Chakrabarti PK (2009) Dynamic magnetic behaviour and Mössbauer effect measurements of magnetite nanoparticles prepared by a new technique in the co-precipitation method. Solid State Commun 149:1790–1794.  https://doi.org/10.1016/j.ssc.2009.07.018CrossRefGoogle Scholar
  13. Banin U, Ben-Shahar Y, Vinokurov K (2014) Hybrid semiconductor-metal nanoparticles: from architecture to function. Chem Mater 26:97–110.  https://doi.org/10.1021/cm402131nCrossRefGoogle Scholar
  14. Bano S, Nazir S, Nazir A, Munir S, Mahmood T, Afzal M, Ansari FL, Mazhar K (2016) Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: surface engineering, T2 relaxometry, and photodynamic treatment potential. Int J Nanomed 11:3833–3848.  https://doi.org/10.2147/ijn.s106553CrossRefGoogle Scholar
  15. Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1:293–298.  https://doi.org/10.1021/nn700189hCrossRefGoogle Scholar
  16. Bao F, Yao J-L, Gu R-A (2009) Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced raman spectroscopy. Langmuir 25:10782–10787.  https://doi.org/10.1021/la901337rCrossRefGoogle Scholar
  17. Baumgartner J, Dey A, Bomans PHH, Le Coadou C, Fratzl P, Sommerdijk NAJM, Faivre D (2013) Nucleation and growth of magnetite from solution. Nat Mater 12:310–314.  https://doi.org/10.1038/nmat3558CrossRefGoogle Scholar
  18. Bertotti G (1998) Hysteresis in magnetism: for physicists, materials scientists, and engineers. Academic PressGoogle Scholar
  19. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358.  https://doi.org/10.1039/b9nr00377kCrossRefGoogle Scholar
  20. Brown PW, Paul W, Constantz B, Society MR (1994) Hydroxyapatite and related materials. CRC, Boca RatonGoogle Scholar
  21. Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor Nanocrystals as Fluorescent Biological Labels. Science (80-) 281:2013–2016.  https://doi.org/10.1126/science.281.5385.2013
  22. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166.  https://doi.org/10.1016/j.pcrysgrow.2007.04.001CrossRefGoogle Scholar
  23. Byrappa K, Yoshimura M (2013) Handbook of hydrothermal technology. William AndrewGoogle Scholar
  24. Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305:366–370.  https://doi.org/10.1016/j.jcis.2006.10.023CrossRefGoogle Scholar
  25. Cao Z, Yang L, Ye Q, Cui Q, Qi D, Ziener U (2013) Transition-metal salt-containing silica nanocapsules elaborated via salt-induced interfacial deposition in inverse miniemulsions as precursor to functional hollow silica particles. Langmuir 29:6509–6518.  https://doi.org/10.1021/la401468tCrossRefGoogle Scholar
  26. Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921.  https://doi.org/10.1063/1.3551582CrossRefGoogle Scholar
  27. Chakraverty BK (1967) Grain size distribution in thin films—2. Non-conservative systems. J Phys Chem Solids 28:2413–2421.  https://doi.org/10.1016/0022-3697(67)90027-3CrossRefGoogle Scholar
  28. Charitidis CA, Georgiou P, Koklioti MA, Trompeta A-F, Markakis V (2014) Manufacturing nanomaterials: from research to industry. Manuf Rev 1:11.  https://doi.org/10.1051/mfreview/2014009CrossRefGoogle Scholar
  29. Chen X, Klingeler R, Kath M, El Gendy AA, Cendrowski K, Kalenczuk RJ, Borowiak-Palen E (2012) Magnetic silica nanotubes: synthesis, drug release, and feasibility for magnetic hyperthermia. ACS Appl Mater Interfaces 4:2303–2309.  https://doi.org/10.1021/am300469rCrossRefGoogle Scholar
  30. Cheng Y, Zhao L, Li Y, Xu T (2011) Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40:2673.  https://doi.org/10.1039/c0cs00097cCrossRefGoogle Scholar
  31. Cho W-S, Yashima M, Kakihana M, Kudo A, Sakata T, Yoshimura M (1995) Room-temperature preparation of the highly crystallized luminescent CaWO4 film by an electrochemical method. Appl Phys Lett 66:1027–1029Google Scholar
  32. Coquerel G (2014) Crystallization of molecular systems from solution: phase diagrams, supersaturation and other basic concepts. Chem Soc Rev 43:2286–2300.  https://doi.org/10.1039/c3cs60359hCrossRefGoogle Scholar
  33. Cote LJ, Teja AS, Wilkinson AP, Zhang ZJ (2002) Continuous hydrothermal synthesis and crystallization of magnetic oxide nanoparticles. J Mater Res Res 17:2410–2416.  https://doi.org/10.1557/jmr.2002.0352CrossRefGoogle Scholar
  34. Cote LJ, Teja AS, Wilkinson AP, Zhang ZJ (2003) Continuous hydrothermal synthesis of CoFe2O4 nanoparticles. Fluid Phase Equilib 210:307–317.  https://doi.org/10.1016/s0378-3812(03)00168-7CrossRefGoogle Scholar
  35. Cui Y, Wang Y, Hui W, Zhang Z, Xin X, Chen C (2005) The synthesis of goldmag nano-particles and their application for antibody immobilization. Biomed Microdevices 7:153–156.  https://doi.org/10.1007/s10544-005-1596-xCrossRefGoogle Scholar
  36. Dąbrowska S, Chudoba T, Wojnarowicz J, Łojkowski W, Dąbrowska S, Chudoba T, Wojnarowicz J, Łojkowski W (2018) Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: a review. Crystals 8:379.  https://doi.org/10.3390/cryst8100379CrossRefGoogle Scholar
  37. Davey RJ, Back KR, Sullivan RA (2015) Crystal nucleation from solutions–transition states, rate determining steps and complexity. Faraday Discuss 179:9–26.  https://doi.org/10.1039/c5fd00037hCrossRefGoogle Scholar
  38. de la Hoz A, Díaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178.  https://doi.org/10.1039/b411438hCrossRefGoogle Scholar
  39. de Paula LB, Primo FL, Pinto MR, Morais PC, Tedesco AC (2017) Evaluation of a chloroaluminium phthalocyanine-loaded magnetic nanoemulsion as a drug delivery device to treat glioblastoma using hyperthermia and photodynamic therapy. RSC Adv 7:9115–9122.  https://doi.org/10.1039/c6ra26105aCrossRefGoogle Scholar
  40. Deng D, Chen Y, Cao J, Tian J, Qian Z, Achilefu S, Gu Y (2012) High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem Mater 24:3029–3037.  https://doi.org/10.1021/cm3015594CrossRefGoogle Scholar
  41. Denis M, Puel F, Veesler S (2009) Polymorphism in processes of crystallization in solution: a practical review. Org Process Res Dev 13:1241–1253.  https://doi.org/10.1021/op900168f
  42. Desai RC, Kapral R (2009) Lifshitz–Slyozov–Wagner theory. Dynamics of Self-Organized and Self-Assembled Structures. Cambridge University Press, Cambridge, pp 87–95CrossRefGoogle Scholar
  43. Dias CSB, Hanchuk TDM, Wender H, Shigeyosi WT, Kobarg J, Rossi AL, Tanaka MN, Cardoso MB, Garcia F (2017) Shape tailored magnetic nanorings for intracellular hyperthermia cancer therapy. Sci Rep 7:14843.  https://doi.org/10.1038/s41598-017-14633-0CrossRefGoogle Scholar
  44. Ding HL, Zhang YX, Wang S, Xu JM, Xu SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572–4580.  https://doi.org/10.1021/cm302828dCrossRefGoogle Scholar
  45. Dong H, Chen Y-C, Feldmann C (2015) Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem 17:4107–4132.  https://doi.org/10.1039/c5gc00943jCrossRefGoogle Scholar
  46. Edel JB, Kornyshev AA, Kucernak AR, Urbakh M (2016) Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces. Chem Soc Rev 45:1581–1596.  https://doi.org/10.1039/c5cs00576kCrossRefGoogle Scholar
  47. Ellis-Behnke RG, Liang Y-X, You S-W, Tay DKC, Zhang S, So K-F, Schneider GE (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci U S A 103:5054–5059.  https://doi.org/10.1073/pnas.0600559103CrossRefGoogle Scholar
  48. Feng J, Biskos G, Schmidt-Ott A (2015) Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process. Sci Rep 5:15788.  https://doi.org/10.1038/srep15788CrossRefGoogle Scholar
  49. Gabriel C, Gabriel S, Grant EH, Grant EH, Halstead BSJ, Mingos DMP (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213.  https://doi.org/10.1039/a827213z
  50. Galema SA (1997) Microwave chemistry. Chem Soc Rev 26:233.  https://doi.org/10.1039/cs9972600233CrossRefGoogle Scholar
  51. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976.  https://doi.org/10.1038/nbt994CrossRefGoogle Scholar
  52. Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348.  https://doi.org/10.1021/ar400309bCrossRefGoogle Scholar
  53. Gedye RN, Smith FE, Westaway KC (1988) The rapid synthesis of organic compounds in microwave ovens. Can J Chem 66:17–26.  https://doi.org/10.1139/v88-003CrossRefGoogle Scholar
  54. Giner-Casares JJ, Liz-Marzán LM (2014) Plasmonic nanoparticles in 2D for biological applications: toward active multipurpose platforms. Nano Today 9:365–377.  https://doi.org/10.1016/j.nantod.2014.05.004CrossRefGoogle Scholar
  55. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315.  https://doi.org/10.1016/0079-6425(89)90001-7CrossRefGoogle Scholar
  56. Gnanaprakash G, Philip J, Jayakumar T, Raj B (2007) Effect of digestion time and alkali addition rate on physical properties of magnetite nanoparticles. J Phys Chem B 111:7978–7986.  https://doi.org/10.1021/jp071299bCrossRefGoogle Scholar
  57. Gogotsi YG, Yoshimura M (1995) Low-temperature oxidation, hydrothermal corrosion, and their effects on properties of SiC (Tyranno) fibers. J Am Ceram Soc 78:1439–1450.  https://doi.org/10.1111/j.1151-2916.1995.tb08835.xCrossRefGoogle Scholar
  58. Gonzalez-Rodriguez R, Campbell E, Naumov A (2019) Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS ONE 14:e0217072.  https://doi.org/10.1371/journal.pone.0217072CrossRefGoogle Scholar
  59. Gutsch A, Mühlenweg H, Krämer M (2004) Tailor-made nanoparticles via gas-phase synthesis. Small 1:30–46.  https://doi.org/10.1002/smll.200400021CrossRefGoogle Scholar
  60. Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh K (2016) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8:3278–3287.  https://doi.org/10.1039/c5nr03867gCrossRefGoogle Scholar
  61. Hakuta Y, Hayashi H, Arai K (2004) Hydrothermal synthesis of photocatalyst potassium hexatitanate nanowires under supercritical conditions. J Mater Sci 39:4977–4980.  https://doi.org/10.1023/b:jmsc.0000035349.99273.c7CrossRefGoogle Scholar
  62. Hamann SD (1981) Properties of electrolyte solutions at high pressures and temperatures. Phys Chem Earth 13–14:89–111.  https://doi.org/10.1016/0079-1946(81)90007-0CrossRefGoogle Scholar
  63. Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817.  https://doi.org/10.3390/ma3073794CrossRefGoogle Scholar
  64. He C, Lu K, Lin W (2014) Nanoscale metal-organic frameworks for real-time intracellular ph sensing in live cells. J Am Chem Soc 136:12253–12256.  https://doi.org/10.1021/ja507333cCrossRefGoogle Scholar
  65. Hergt R, Dutz S, Zeisberger M, Gawalek W (2006) Nanocrystalline iron oxide and Ba ferrite particles in the superparamagnetism-ferromagnetism transition range with ferrofluid applications. J Phys Condens Matter 18:2527–2542.  https://doi.org/10.1088/0953-8984/18/38/s01CrossRefGoogle Scholar
  66. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20:385214.  https://doi.org/10.1088/0953-8984/20/38/385214CrossRefGoogle Scholar
  67. Hermanson G (2008) Bioconjugate Techniques 2nd Edition. Elsevier, p 1323Google Scholar
  68. Higgins SR, Eggleston CM, Jordan G, Knauss KG, Boro CO (1998) In-situ observation of oxide and silicate mineral dissolution by hydrothermal scanning force microscopy: initial results for hematite and albite. Mineral Mag A 62:618–619Google Scholar
  69. Al Arbash A, Ahmad Z, Al-Sagheer F (2006) Microstructure and thermomechanical properties of polyimide-silica nanocomposites. J Nanomaterial 2006:Article ID 58648.  https://doi.org/10.1155/JNM/2006/58648
  70. Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882.  https://doi.org/10.1021/ar200090cCrossRefGoogle Scholar
  71. Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Neal D. Evans A, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14:17–30.  https://doi.org/10.1021/la970588w
  72. Hu X, Yu JC, Gong J, Li Q, Li G (2007) α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater 19:2324–2329.  https://doi.org/10.1002/adma.200602176CrossRefGoogle Scholar
  73. Hu D, Wang Y, Song Q (2009) Weakly magnetic field-assisted synthesis of magnetite nano-particles in oxidative co-precipitation (Article in press G Model). Particuology.  https://doi.org/10.1016/j.partic.2009.03.005CrossRefGoogle Scholar
  74. Hurley KR, Ring HL, Etheridge M, Zhang J, Gao Z, Shao Q, Klein ND, Szlag VM, Chung C, Reineke TM, Garwood M, Bischof JC, Haynes CL (2016) Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle. Mol Pharm 13:2172–2183.  https://doi.org/10.1021/acs.molpharmaceut.5b00866CrossRefGoogle Scholar
  75. Jain K (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161.  https://doi.org/10.1586/14737159.3.2.153CrossRefGoogle Scholar
  76. Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948.  https://doi.org/10.1021/ja074447kCrossRefGoogle Scholar
  77. Jing Z, Wu S (2004) Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. Materials 58:3637–3640.  https://doi.org/10.1016/j.matlet.2004.07.010CrossRefGoogle Scholar
  78. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728.  https://doi.org/10.2217/nnm.11.19CrossRefGoogle Scholar
  79. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chemie Int Ed 43:6250–6284.  https://doi.org/10.1002/anie.200400655CrossRefGoogle Scholar
  80. Karatutlu A, Sapelkin A (2018) Liquid-phase synthesis of nanoparticles and nanostructured materials. Emerg Appl Nanoparticles Archit Nanostructures 1–28.  https://doi.org/10.1016/B978-0-323-51254-1.00001-4
  81. Kell AJ, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, Bergeron MG, Simard B (2008) Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2:1777–1788.  https://doi.org/10.1021/nn700183gCrossRefGoogle Scholar
  82. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chemie Int Ed 47:8438–8441.  https://doi.org/10.1002/anie.200802469CrossRefGoogle Scholar
  83. Kino T, Kuzuya T, Itoh K, Sumiyama K, Wakamatsu T, Ichidate M (2008) Synthesis of chalcopyrite nanoparticles via thermal decomposition of metal-thiolate. Mater Trans 49:435–438.  https://doi.org/10.2320/matertrans.mbw200724CrossRefGoogle Scholar
  84. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120:18–26.  https://doi.org/10.1016/j.jconrel.2007.03.012CrossRefGoogle Scholar
  85. Kodama R (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372.  https://doi.org/10.1016/s0304-8853(99)00347-9CrossRefGoogle Scholar
  86. Kolhatkar A, Jamison A, Litvinov D, Willson R, Lee T (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14:15977–16009.  https://doi.org/10.3390/ijms140815977CrossRefGoogle Scholar
  87. Kooti M, Kooti M, Matturi L (2011) Microwave-assisted fabrication of γ-Fe2O3 nanoparticles from tris (acetylacetonato) iron(III). Int Nano Lett 1:38–42Google Scholar
  88. Kou J, Varma RS (2012) Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles. Chemsuschem 5:2435–2441.  https://doi.org/10.1002/cssc.201200477CrossRefGoogle Scholar
  89. Kovalenko Maksym V, Bodnarchuk Maryna I, Lechner Rainer T, Hesser Günter, Friedrich Schäffler A, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129:6352–6353.  https://doi.org/10.1021/ja0692478CrossRefGoogle Scholar
  90. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854.  https://doi.org/10.1021/ja01167a001CrossRefGoogle Scholar
  91. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110.  https://doi.org/10.1021/cr068445eCrossRefGoogle Scholar
  92. Lee D-K, Hwang N-M (2009) Thermodynamics and kinetics of monodisperse alloy nanoparticles synthesized through digestive ripening. Scr Mater 61:304–307.  https://doi.org/10.1016/j.scriptamat.2009.04.008CrossRefGoogle Scholar
  93. Lee D-K, Park S-I, Lee JK, Hwang N-M (2007) A theoretical model for digestive ripening. Acta Mater 55:5281–5288.  https://doi.org/10.1016/j.actamat.2007.05.048CrossRefGoogle Scholar
  94. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902.  https://doi.org/10.1021/ar2000259CrossRefGoogle Scholar
  95. Lee J, Jung Park T, Jae Lee S, Zhou H, Lee J, Youn Park J (2012) Ultrasensitive DNA monitoring by Au-Fe3O4 nanocomplex ultrasensitive DNA monitoring by Au-Fe3O4 nanocomplex. Sens Actuators B 163:224–232.  https://doi.org/10.1016/j.snb.2012.01.040CrossRefGoogle Scholar
  96. Li GS, Smith RL, Inomata H, Arai K (2002) Preparation and magnetization of hematite nanocrystals with amorphous iron oxide layers by hydrothermal conditions. Mater Res Bull 37:949–955.  https://doi.org/10.1016/S0025-5408(02)00695-5CrossRefGoogle Scholar
  97. Li Z, Tan B, Allix M, Cooper AI, Rosseinsky MJ (2008) Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 4:231–239.  https://doi.org/10.1002/smll.200700575CrossRefGoogle Scholar
  98. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50.  https://doi.org/10.1016/0022-3697(61)90054-3CrossRefGoogle Scholar
  99. Lim WQ, Gao Z (2016) Plasmonic nanoparticles in biomedicine. Nano Today 11:168–188.  https://doi.org/10.1016/j.nantod.2016.02.002CrossRefGoogle Scholar
  100. Liu Y, Brandon R, Cate M, Peng X, Stony R, Johnson M (2007) Detection of pathogens using luminescent CdSe/ZnS dendron nanocrystals and a porous membrane immunofilter. Anal Chem 79:8796–8802.  https://doi.org/10.1021/ac0709605
  101. Liu L, Guan J, Shi W, Sun Z, Zhao J (2010) Facile Synthesis and Growth Mechanism of Flowerlike Ni − Fe Alloy Nanostructures. J Phys Chem C 114:13565–13570.  https://doi.org/10.1021/jp104212vCrossRefGoogle Scholar
  102. Liu Y, Jia S, Wu Q, Ran J, Zhang W, Wu S (2011) Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal Commun 12:717–720.  https://doi.org/10.1016/j.catcom.2010.12.032CrossRefGoogle Scholar
  103. López-Ortega A, Lottini E, de Fernández CJ, Sangregorio C (2015) Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem Mater 27:4048–4056.  https://doi.org/10.1021/acs.chemmater.5b01034
  104. Louie AY, Hüber MM, Ahrens ET, Rothbächer U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325.  https://doi.org/10.1038/73780CrossRefGoogle Scholar
  105. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Lett 2:183–186.  https://doi.org/10.1021/nl015681q
  106. Lynch J, Zhuang J, Wang T, LaMontagne D, Wu H, Cao YC (2011) Gas-bubble effects on the formation of colloidal iron oxide nanocrystals. J Am Chem Soc 133:12664–12674.  https://doi.org/10.1021/ja2032597CrossRefGoogle Scholar
  107. Mahmoud MHH, Hessien MM (2018) Microwave assisted-hydrothermal synthesis of nickel ferrite nanoparticles. Orient J Chem 34:2577–2582.  https://doi.org/10.13005/ojc/340546
  108. Majidi S, Zeinali Sehrig F, Farkhani SM, Soleymani Goloujeh M, Akbarzadeh A (2016) Current methods for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol 44:722–734.  https://doi.org/10.3109/21691401.2014.982802CrossRefGoogle Scholar
  109. Mantzaris NV (2005) Liquid-phase synthesis of nanoparticles: particle size distribution dynamics and control. Chem Eng Sci 60:4749–4770.  https://doi.org/10.1016/j.ces.2005.04.012CrossRefGoogle Scholar
  110. Maris HJ (2006) Introduction to the physics of nucleation. Comptes Rendus Phys 7:946–958.  https://doi.org/10.1016/j.crhy.2006.10.019CrossRefGoogle Scholar
  111. Maslar JE, Hurst WS, Bowers WJ, Hendricks JH, Aquino MI, Levin I (2001) In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions. Appl Surf Sci 180:102–118. doi:0169-4332(20010801)180:1-2<102:ISRSIO>2.0.ZU;2-3Google Scholar
  112. Matson JB, Zha RH, Stupp SI (2011) Peptide self-assembly for crafting functional biological materials. Curr Opin Solid State Mater Sci 15:225–235.  https://doi.org/10.1016/j.cossms.2011.08.001CrossRefGoogle Scholar
  113. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150.  https://doi.org/10.1021/ja002535y
  114. Mazumder S, Dey R, Mitra MK, Mukherjee S, Das GC (2009) Review: biofunctionalized quantum dots in biology and medicine. J Nanomater 2009:1–17.  https://doi.org/10.1155/2009/815734CrossRefGoogle Scholar
  115. Mi C, Zhang J, Gao H, Wu X, Wang M, Wu Y, Di Y, Xu Z, Mao C, Xu S (2010) Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb, Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells. Nanoscale 2:1141.  https://doi.org/10.1039/c0nr00102cCrossRefGoogle Scholar
  116. Miguel-Sancho N, Bomatí-Miguel O, Colom GO, Salvador J-P, Marco M-P, Santamaría J, De Bioingeniería Ciber (2011) Development of stable, water-dispersible, and biofunctionalizable superparamagnetic iron oxide nanoparticles. Chem Mater 23:2795–2802.  https://doi.org/10.1021/cm1036452CrossRefGoogle Scholar
  117. Mingos DMP, Baghurst DR (1991) Tilden lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev 20:1.  https://doi.org/10.1039/cs9912000001
  118. Mizukoshi Y, Shuto T, Masahashi N, Tanabe S (2009) Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: contribution of sonochemically generated oxidants. Ultrason Sonochem 16:525–531.  https://doi.org/10.1016/j.ultsonch.2008.12.017CrossRefGoogle Scholar
  119. Moon SY, Tanaka S, Sekino T (2010) Crystal growth of thiol-stabilized gold nanoparticles by heat-induced coalescence. Nanoscale Res Lett 5:813–817.  https://doi.org/10.1007/s11671-010-9565-6CrossRefGoogle Scholar
  120. Morey GW, Niggli P (1913) The hydrothermal formation of silicates, a review. J Am Chem Soc 35:1086–1130.  https://doi.org/10.1021/ja02198a600CrossRefGoogle Scholar
  121. Morschhäuser R, Krull M, Kayser C, Boberski C, Bierbaum R, Püschner PA, Glasnov TN, Kappe CO (2012) Microwave-assisted continuous flow synthesis on industrial scale. Green Process Synth 1.  https://doi.org/10.1515/gps-2012-0032
  122. Mou X, Wang J, Meng X, Liu J, Shi L, Sun L (2017) Multifunctional nanoprobe based on upconversion nanoparticles for luminescent sensing and magnetic resonance imaging. J Lumin 190:16–22.  https://doi.org/10.1016/j.jlumin.2017.05.006CrossRefGoogle Scholar
  123. Mullin JW (2001) Crystallization. Elsevier, AmsterdamGoogle Scholar
  124. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610.  https://doi.org/10.1146/annurev.matsci.30.1.545CrossRefGoogle Scholar
  125. Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44:469–478.  https://doi.org/10.1021/ar1001457CrossRefGoogle Scholar
  126. Nalwa HS (2004) Encyclopedia of nanoscience and nanotechnology, vol 1–10. American Scientific PublishersGoogle Scholar
  127. Nedkov I, Merodiiska T, Slavov L, Vandenberghe RE, Kusano Y, Takada J (2006) Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation. J Magn Magn Mater 300:358–367.  https://doi.org/10.1016/j.jmmm.2005.05.020CrossRefGoogle Scholar
  128. Nguyen T, Mammeri F, Ammar S (2018) Iron oxide and gold based magneto-plasmonic nanostructures for medical applications: a review. Nanomaterials 8:149.  https://doi.org/10.3390/nano8030149CrossRefGoogle Scholar
  129. Nishioka M, Miyakawa M, Daino Y, Kataoka H, Koda H, Sato K, Suzuki TM (2013) Single-mode microwave reactor used for continuous flow reactions under elevated pressure. Ind Eng Chem Res 52:4683–4687.  https://doi.org/10.1021/ie400199rCrossRefGoogle Scholar
  130. Nobs L, Buchegger F, Gurny R, Allémann E (2004) Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 93:1980–1992.  https://doi.org/10.1002/jps.20098CrossRefGoogle Scholar
  131. Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis—a critical technology overview. Green Chem 6:128–141.  https://doi.org/10.1039/b310502dCrossRefGoogle Scholar
  132. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8:3834–3838.  https://doi.org/10.1021/nl802223fCrossRefGoogle Scholar
  133. Öhrngren P, Fardost A, Russo F, Schanche J-S, Fagrell M, Larhed M (2012) Evaluation of a nonresonant microwave applicator for continuous-flow chemistry applications. Org Process Res Dev 16:1053–1063.  https://doi.org/10.1021/op300003bCrossRefGoogle Scholar
  134. Ortgies DH, de la Cueva L, del Rosal B, Sanz-Rodríguez F, Fernández N, Iglesias-de la Cruz MC, Salas G, Cabrera D, Teran FJ, Jaque D, Martín Rodríguez E (2016) In vivo deep tissue fluorescence and magnetic imaging employing hybrid nanostructures. ACS Appl Mater Interfaces 8:1406–1414.  https://doi.org/10.1021/acsami.5b10617CrossRefGoogle Scholar
  135. Oskam G, Abhinav Nellore R, Lee Penn A, Searson PC (2003) The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio. J Phys Chem B 107:1734–1738.  https://doi.org/10.1021/jp021237fCrossRefGoogle Scholar
  136. Ozel F, Kockar H, Karaagac O (2015) Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size. J Supercond Nov Magn 28:823–829.  https://doi.org/10.1007/s10948-014-2707-9CrossRefGoogle Scholar
  137. Ozkaya T, Toprak MS, Baykal A, Kavas H, Köseoğlu Y, Aktaş B (2009) J Less-Common Metals. Elsevier Pub. CoGoogle Scholar
  138. Paek S-M, Oh J-M, Choy J-H (2011) A lattice-engineering route to heterostructured functional nanohybrids. Chem Asian J 6:324–338.  https://doi.org/10.1002/asia.201000578CrossRefGoogle Scholar
  139. Pan J, El-Ballouli AO, Rollny L, Voznyy O, Burlakov VM, Goriely A, Sargent EH, Bakr OM (2013) Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages. ACS Nano 7:10158–10166.  https://doi.org/10.1021/nn404397dCrossRefGoogle Scholar
  140. Pan S, Liu Z, Lu W (2018) Synthesis of naked plasmonic/magnetic Au/Fe3O4 nanostructures by plasmon-driven anti-replacement reaction. Nanotechnology 30:6.  https://doi.org/10.1088/1361-6528/aaf17cCrossRefGoogle Scholar
  141. Pan S, Liu Z, Lu W (2019) Synthesis of naked plasmonic/magnetic Au/Fe3O4 nanostructures by plasmon-driven anti-replacement reaction. Nanotechnology 30:065605.  https://doi.org/10.1088/1361-6528/aaf17cCrossRefGoogle Scholar
  142. Pardoe H, Chua-Anusorn W, St. Pierre TG, Dobson J (2001) Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J Magn Magn Mater 225:41–46.  https://doi.org/10.1016/S0304-8853(00)01226-9
  143. Park D-Y, Myung S-T (2014) Carbon-coated magnetite embedded on carbon nanotubes for rechargeable lithium and sodium batteries. ACS Appl Mater Interfaces 6:11749–11757.  https://doi.org/10.1021/am502424jCrossRefGoogle Scholar
  144. Park J, Lee E, Hwang N-M, Kang M, Kim SC, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hyeon T (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chemie Int Ed 44:2872–2877.  https://doi.org/10.1002/anie.200461665CrossRefGoogle Scholar
  145. Park HJ, McConnell JT, Boddohi S, Kipper MJ, Johnson PA (2011) Synthesis and characterization of enzyme-magnetic nanoparticle complexes: effect of size on activity and recovery. Colloids Surf B Biointerfaces 83:198–203.  https://doi.org/10.1016/j.colsurfb.2010.11.006CrossRefGoogle Scholar
  146. Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernández-García MP, Guedes A, Tavares PB, Grenèche J-M, Araújo JP, Freire C (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504.  https://doi.org/10.1021/cm300301cCrossRefGoogle Scholar
  147. Perreux L, Loupy AÂ (2001) A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 57:9199–9223.  https://doi.org/10.1016/s0040-4020(01)00905-xCrossRefGoogle Scholar
  148. Pinho SLC, Pereira GA, Voisin P, Kassem J, Bouchaud V, Etienne L, Peters JA, Carlos L, Mornet S, Geraldes CFGC, Rocha J, Delville M-H (2010) Fine tuning of the relaxometry of γ-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. ACS Nano 4:5339–5349.  https://doi.org/10.1021/nn101129rCrossRefGoogle Scholar
  149. Pinho SLC, Laurent S, Rocha J, Roch A, Delville M-H, Mornet S, Carlos LD, Vander Elst L, Muller RN, Geraldes CFGC (2012) Relaxometric studies of γ-Fe2O3@SiO2 core shell nanoparticles: when the coating matters. J Phys Chem C 116:2285–2291.  https://doi.org/10.1021/jp2086413CrossRefGoogle Scholar
  150. Piras CC, Fernández-Prieto S, De Borggraeve WM (2019) Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1:937–947.  https://doi.org/10.1039/c8na00238jCrossRefGoogle Scholar
  151. Polshettiwar V, Nadagouda MN, Varma RS (2009a) Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Aust J Chem 62:16–26.  https://doi.org/10.1071/ch08404CrossRefGoogle Scholar
  152. Polshettiwar V, Baruwati B, Varma RS (2009b) Self-assembly of metal oxides into three-dimensional nanostructures: synthesis and application in catalysis. ACS Nano 3:728–736.  https://doi.org/10.1021/nn800903pCrossRefGoogle Scholar
  153. Porter DA, Easterling KE (1992) Phase transformations in metals and alloys. Springer, US, Boston, MACrossRefGoogle Scholar
  154. Pouget EM, Bomans PHH, Goos JACM, Frederik PM, de With G, Sommerdijk NAJM (2009) The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM. Science (80-) 323:1455–1458.  https://doi.org/10.1126/science.1169434
  155. Prasad BL V., Stoeva SI, Christopher M. Sorensen A, Klabunde KJ (2002) Digestive ripening of thiolated gold nanoparticles: the effect of alkyl chain length. Langmuir 18:7515–7520.  https://doi.org/10.1021/la020181d
  156. Prasad Yadav T, Manohar Yadav R, Pratap Singh D (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2:22–48.  https://doi.org/10.5923/j.nn.20120203.01CrossRefGoogle Scholar
  157. Qu S, Yang H, Ren D, Kan S, Zou G, Li D, Li M (1999) Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J Colloid Interface Sci 215:190–192.  https://doi.org/10.1006/jcis.1999.6185CrossRefGoogle Scholar
  158. Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angew Chemie Int Ed English 24:1026–1040.  https://doi.org/10.1002/anie.198510261CrossRefGoogle Scholar
  159. Ramaswamy V, Haynes TE, White CW, MoberlyChan WJ, Roorda S, Aziz MJ (2005) Synthesis of nearly monodisperse embedded nanoparticles by separating nucleation and growth in ion implantation. Nano Lett 5:373–377.  https://doi.org/10.1021/nl048077zCrossRefGoogle Scholar
  160. Reau A, Guizard B, Mengeot C, Boulanger L, Ténégal F (2007) Large scale production of nanoparticles by laser pyrolysis. Mater Sci Forum 534–536:85–88.  https://doi.org/10.4028/www.scientific.net/MSF.534-536.85CrossRefGoogle Scholar
  161. Reiss H (1951) The growth of uniform colloidal dispersions. J Chem Phys 19:482–487.  https://doi.org/10.1063/1.1748251CrossRefGoogle Scholar
  162. Rizza GC, Strobel M, Heinig KH, Bernas H (2001) Ion irradiation of gold inclusions in SiO2: Experimental evidence for inverse Ostwald ripening. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 178:78–83.  https://doi.org/10.1016/s0168-583x(01)00496-7CrossRefGoogle Scholar
  163. Rizza G, Cheverry H, Gacoin T, Lamasson A, Henry S (2007) Ion beam irradiation of embedded nanoparticles: Toward an in situ control of size and spatial distribution. J Appl Phys 101:014321.  https://doi.org/10.1063/1.2402351CrossRefGoogle Scholar
  164. Ross FM, Tersoff J, Tromp RM (1998) Coarsening of self-assembled Ge quantum dots on Si(001). Phys Rev Lett 80:984–987.  https://doi.org/10.1103/physrevlett.80.984CrossRefGoogle Scholar
  165. Ross FM, Tromp RM, Reuter MC (1999) Transition states between pyramids and domes during Ge/Si Island growth. Science 286:1931–1934 .  https://doi.org/10.1126/science.286.5446.1931
  166. Russo P, Acierno D, Palomba M, Carotenuto G, Rosa R, Rizzuti A, Leonelli C (2012) Ultrafine magnetite nanopowder: synthesis, characterization, and preliminary use as filler of polymethylmethacrylate nanocomposites. J Nanotechnol 2012:1–8.  https://doi.org/10.1155/2012/728326CrossRefGoogle Scholar
  167. Salavati-Niasari M, Davar F, Mazaheri M (2008) Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato)manganese(II)] complex. Polyhedron 27:3467–3471.  https://doi.org/10.1016/j.poly.2008.04.015CrossRefGoogle Scholar
  168. Salavati-Niasari M, Mahmoudi T, Amiri O (2012) Easy synthesis of magnetite nanocrystals via coprecipitation method. J Clust Sci 23:597–602.  https://doi.org/10.1007/s10876-012-0451-5CrossRefGoogle Scholar
  169. Saleh N, Afrooz A, Bisesi J, Aich N, Plazas-Tuttle J, Sabo-Attwood T (2014) Emergent properties and toxicological considerations for nanohybrid materials in aquatic systems. Nanomaterials 4:372–407.  https://doi.org/10.3390/nano4020372CrossRefGoogle Scholar
  170. Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal Chem 83:4453–4488.  https://doi.org/10.1021/ac200853aCrossRefGoogle Scholar
  171. Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: past, present, and future. Langmuir 25:13840–13851.  https://doi.org/10.1021/la9019475CrossRefGoogle Scholar
  172. Sathya A, Kalyani S, Ranoo S, Philip J (2017) One-step microwave-assisted synthesis of water-dispersible Fe3O4 magnetic nanoclusters for hyperthermia applications. J Magn Magn Mater 439:107–113.  https://doi.org/10.1016/j.jmmm.2017.05.018CrossRefGoogle Scholar
  173. Sattar AA, EL-Sayed HM, ALsuqia I (2015) Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J Magn Magn Mater 395:89–96.  https://doi.org/10.1016/j.jmmm.2015.07.039
  174. Schumacher M, Ruppel M, Kohlbrecher J, Burkhardt M, Plamper F, Drechsler M, Müller AHE (2009) Smart organic–inorganic nanohybrid stars based on star-shaped poly(acrylic acid) and functional silsesquioxane nanoparticles. Polymer 50:1908–1917.  https://doi.org/10.1016/j.polymer.2009.02.010CrossRefGoogle Scholar
  175. Selvan ST, Tan TTY, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26:11631–11641.  https://doi.org/10.1021/la903512mCrossRefGoogle Scholar
  176. Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV (2015) Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem 84:519–550.  https://doi.org/10.1146/annurev-biochem-060614-034411CrossRefGoogle Scholar
  177. Sheng W, Liu J, Liu S, Lu Q, Kaplan Ac DL, Zhu H (2014) One-step synthesis of biocompatible magnetite/silk fibroin core-shell nanoparticles. J Mater Chem B 2:7394–7402.  https://doi.org/10.1039/c4tb01125bCrossRefGoogle Scholar
  178. Shrivastava N, Khan LU, Khan ZU, Vargas JM, Moscoso-Londoño O, Ospina C, Brito HF, Javed Y, Felinto MCFC, Menezes AS, Knobel M, Sharma SK (2017) Building block magneto-luminescent nanomaterials of iron-oxide/ZnS@LaF3: Ce3+, Gd3+, Tb3+ with green emission. J Mater Chem C 5:2282–2290.  https://doi.org/10.1039/c6tc05053kCrossRefGoogle Scholar
  179. Smetana AB, Klabunde KJ, Sorensen CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J Colloid Interface Sci 284:521–526.  https://doi.org/10.1016/j.jcis.2004.10.038CrossRefGoogle Scholar
  180. Song D, Guo G, Jiang J, Zhang L, Ma A, Ma X, Chen J, Cheng Z (2016) Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy. Prog Nat Sci Mater Int 26:590–599.  https://doi.org/10.1016/j.pnsc.2016.11.002CrossRefGoogle Scholar
  181. Stanford MG, Lewis BB, Mahady K, Fowlkes JD, Rack PD (2017) Review article: advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams. J Vac Sci Technol B, Nanotechnol Microelectron Mater Process Meas Phenom 35:030802.  https://doi.org/10.1116/1.4981016CrossRefGoogle Scholar
  182. Stass DV, Woodward JR, Timmel CR, Hore PJ, McLauchlan KA (2000) Radiofrequency magnetic field effects on chemical reaction yields. Chem Phys Lett 329:15–22.  https://doi.org/10.1016/s0009-2614(00)00980-5CrossRefGoogle Scholar
  183. Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I (2002) Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 124:2305–11.  https://doi.org/10.1021/ja012076g
  184. Sue K, Suzuki M, Arai K, Ohashi T, Ura H, Matsui K, Hakuta Y, Hayashi H, Watanabe M, Hiaki T (2006) Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chem 8:634.  https://doi.org/10.1039/b518291cCrossRefGoogle Scholar
  185. Sugimoto T (1987) Preparation of monodispersed colloidal particles. Adv Colloid Interface Sci 28:65–108.  https://doi.org/10.1016/0001-8686(87)80009-xCrossRefGoogle Scholar
  186. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205.  https://doi.org/10.1021/ja026501xCrossRefGoogle Scholar
  187. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265.  https://doi.org/10.1016/j.addr.2008.03.018CrossRefGoogle Scholar
  188. Sun P, Zhang H, Liu C, Fang J, Wang M, Chen J, Zhang J, Mao C, Xu S (2010) Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir 26:1278–1284.  https://doi.org/10.1021/la9024553CrossRefGoogle Scholar
  189. Sun W, Yang W, Xu Z, Li Q (2018a) Anchoring Pd nanoparticles on Fe3O4@SiO2 core-shell nanoparticles by cross-linked polyvinylpyrrolidone for nitrite reduction. ACS Appl Nano Mater 1:5035–5043.  https://doi.org/10.1021/acsanm.8b01149CrossRefGoogle Scholar
  190. Sun L, Wei R, Feng J, Zhang H (2018b) Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 364:10–32.  https://doi.org/10.1016/j.ccr.2018.03.007CrossRefGoogle Scholar
  191. Taniguchi T, Nakagawa K, Watanabe T, Matsushita N, Yoshimura M (2009) Hydrothermal growth of fatty acid stabilized iron oxide nanocrystals. J Phys Chem C 113:839–843.  https://doi.org/10.1021/jp8062433CrossRefGoogle Scholar
  192. Tartaj P, Serna CJ (2003) Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J Am Chem Soc 125:15754–15755.  https://doi.org/10.1021/ja0380594CrossRefGoogle Scholar
  193. Taylor P (2003) Ostwald ripening in emulsions: estimation of solution thermodynamics of the disperse phase. Adv Colloid Interface Sci 106:261–285CrossRefGoogle Scholar
  194. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630.  https://doi.org/10.1021/cr400544sCrossRefGoogle Scholar
  195. Tromp RM, Ross FM, Reuter MC (2000) Instability-Driven SiGe Island Growth. Phys Rev Lett 84:4641–4644.  https://doi.org/10.1103/physrevlett.84.4641CrossRefGoogle Scholar
  196. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452.  https://doi.org/10.1002/chem.200400417CrossRefGoogle Scholar
  197. Valenzuela R, Fuentes MC, Parra C, Baeza J, Duran N, Sharma SK, Knobel M, Freer J (2009) Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. J Alloys Compd 488:227–231.  https://doi.org/10.1016/j.jallcom.2009.08.087CrossRefGoogle Scholar
  198. Vereda F, Juan de Vicente A, Hidalgo-Álvarez R (2007) Influence of a magnetic field on the formation of magnetite particles via two precipitation methods. Langmuir 23:3581–3589.  https://doi.org/10.1021/la0633583CrossRefGoogle Scholar
  199. Vestal CR, Zhang ZJ (2003) Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett 3:1739–1743.  https://doi.org/10.1021/nl034816kCrossRefGoogle Scholar
  200. Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2:837–846.  https://doi.org/10.1039/c0sc00338gCrossRefGoogle Scholar
  201. Voorhees PW (1992) Ostwald ripening of two-phase mixtures. Annu Rev Mater Sci 22:197–215.  https://doi.org/10.1146/annurev.ms.22.080192.001213CrossRefGoogle Scholar
  202. Wang Y, Xia Y (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4:2047–2050.  https://doi.org/10.1021/nl048689jCrossRefGoogle Scholar
  203. Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400.  https://doi.org/10.1021/ja9705102CrossRefGoogle Scholar
  204. Werengowska-Ciećwierz K, Wiśniewski M, Terzyk AP, Furmaniak S (2015) The Chemistry of Bioconjugation in Nanoparticles-Based Drug Delivery System. Adv Condens Matter Phys 2015:1–27.  https://doi.org/10.1155/2015/198175CrossRefGoogle Scholar
  205. Wu M, Xiong Y, Jia Y, Ye J, Zhang K, Chen Q (2005) Co-doped magnetite nanowire arrays prepared hydrothermally. Appl Phys A 81:1355–1358.  https://doi.org/10.1007/s00339-005-3289-y
  206. Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65:1882–1884.  https://doi.org/10.1016/j.matlet.2011.03.065CrossRefGoogle Scholar
  207. Xie T, Jing C, Long Y-T (2017) Single plasmonic nanoparticles as ultrasensitive sensors. Analyst 142:409–420.  https://doi.org/10.1039/c6an01852aCrossRefGoogle Scholar
  208. Xu Y, Karmakar A, Wang D, Mahmood MW, Watanabe F, Zhang Y, Fejleh A, Fejleh P, Li Z, Kannarpady G, Ali S, Biris AR, Biris AS (2010) Multifunctional Fe3O4 cored magnetic-quantum dot fluorescent nanocomposites for rf nanohyperthermia of cancer cells. J Phys Chem C 114:5020–5026.  https://doi.org/10.1021/jp9103036CrossRefGoogle Scholar
  209. Xuan S, Lee S-F, Lau JT-F, Zhu X, Wang Y-XJ, Wang F, Lai JMY, Sham KWY, Lo P-C, Yu JC, Cheng CHK, Leung KC-F (2012) Photocytotoxicity and magnetic relaxivity responses of dual-porous γ-Fe2O3@meso-SiO2 microspheres. ACS Appl Mater Interfaces 4:2033–2040.  https://doi.org/10.1021/am300008xCrossRefGoogle Scholar
  210. Yahya RB, Hayashi H, Nagase T, Ebina T, Onodera Y, Saitoh N (2001) Hydrothermal synthesis of potassium hexatitanates under subcritical and supercritical water conditions and its application in photocatalysis. Chem Mater 13:842–847.  https://doi.org/10.1021/cm000561pCrossRefGoogle Scholar
  211. Yan F, Sun R (2014) Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol. Mater Res Bull 57:293–299.  https://doi.org/10.1016/j.materresbull.2014.06.012CrossRefGoogle Scholar
  212. Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J (2009) A magnetic, luminescent and mesoporous core–shell structured composite material as drug carrier. Biomaterials 30:4786–4795.  https://doi.org/10.1016/j.biomaterials.2009.05.038CrossRefGoogle Scholar
  213. Yang Y, Liu X, Lv Y, Herng TS, Xu X, Xia W, Zhang T, Fang J, Xiao W, Ding J (2015) Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc. Adv Funct Mater 25:812–820.  https://doi.org/10.1002/adfm.201402764CrossRefGoogle Scholar
  214. Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, Martini A, Toprak MS, Muller RN, Muhammed M (2012) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T2 contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7:460–468.  https://doi.org/10.1002/cmmi.1473CrossRefGoogle Scholar
  215. Yin W, Chen X, Cao M, Hu C, Wei B (2009) α-Fe2O3 nanocrystals: controllable SSA-assisted hydrothermal synthesis, growth mechanism, and magnetic properties. J Phys Chem C 113:15897–15903.  https://doi.org/10.1021/jp904413mCrossRefGoogle Scholar
  216. Yu R, Liz-Marzán LM, García de Abajo FJ (2017) Universal analytical modeling of plasmonic nanoparticles. Chem Soc Rev 46:6710–6724.  https://doi.org/10.1039/c6cs00919kCrossRefGoogle Scholar
  217. Yuwono VM, Burrows ND, Soltis JA, Penn RL (2010) Oriented Aggregation: Formation and Transformation of Mesocrystal Intermediates Revealed. J Am Chem Soc 132:2163–2165.  https://doi.org/10.1021/ja909769aCrossRefGoogle Scholar
  218. Zhang Q, Zhang T, Ge J, Yin Y (2008) Permeable silica shell through surface-protected etching. Nano Lett 8:2867–2871.  https://doi.org/10.1021/nl8016187CrossRefGoogle Scholar
  219. Zhang R, Khalizov A, Wang L, Hu M, Xu W (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112:1957–2011.  https://doi.org/10.1021/cr2001756CrossRefGoogle Scholar
  220. Zhang L, Wang Y, Tang Y, Jiao Z, Xie C, Zhang H, Gu P, Wei X, Yang G-Y, Gu H, Zhang C (2013) High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model. Nanoscale 5:4506.  https://doi.org/10.1039/c3nr00119aCrossRefGoogle Scholar
  221. Zhang Q, Yin T, Gao G, Shapter JG, Lai W, Huang P, Qi W, Song J, Cui D (2017) Multifunctional Core@Shell magnetic nanoprobes for enhancing targeted magnetic resonance imaging and fluorescent labeling in vitro and in vivo. ACS Appl Mater Interfaces 9:17777–17785.  https://doi.org/10.1021/acsami.7b04288CrossRefGoogle Scholar
  222. Zhao Wenru, Jinlou Gu, Zhang Lingxia, Hangrong Chen A, Shi J (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 127:8916.  https://doi.org/10.1021/ja051113rCrossRefGoogle Scholar
  223. Zheng Y, Cheng Y, Wang ÃY, Bao F, Biefeld R (2005) Synthesis and shape evolution of a-Fe2O3 nanophase through two-step oriented aggregation in solvothermal system. J Cryst Growth 284:221–225.  https://doi.org/10.1016/j.jcrysgro.2005.06.051CrossRefGoogle Scholar
  224. Zhichuan Xu, Yanglong Hou A, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699.  https://doi.org/10.1021/ja073057vCrossRefGoogle Scholar
  225. Zhou M, Nakatani E, Gronenberg LS, Tokimoto T, Wirth MJ, Hruby VJ, Roberts A, Lynch RM, Ghosh I (2007) Peptide-Labeled Quantum Dots for Imaging GPCRs in Whole Cells and as Single Molecules. Bioconjug Chem 18:323–332.  https://doi.org/10.1021/bc0601929CrossRefGoogle Scholar
  226. Zhu Y, Ikoma T, Hanagata N, Kaskel S (2010) Rattle-Type Fe3O4@SiO2 hollow mesoporous spheres as carriers for drug delivery. Small 6:471–478.  https://doi.org/10.1002/smll.200901403CrossRefGoogle Scholar
  227. Zhu N, Ji H, Yu P, Niu J, Farooq M, Akram M, Udego I, Li H, Niu X, Zhu N, Ji H, Yu P, Niu J, Farooq MU, Akram MW, Udego IO, Li H, Niu X (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8:810.  https://doi.org/10.3390/nano8100810CrossRefGoogle Scholar
  228. Zinke-Allmang M, Feldman LC, Grabow MH (1992) Clustering on surfaces. Surf Sci Rep 16:377–463.  https://doi.org/10.1016/0167-5729(92)90006-wCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gopal Niraula
    • 1
  • Navadeep Shrivastava
    • 2
    Email author
  • Kanwal Akhtar
    • 3
  • Yasir Javed
    • 3
  • J. A. H. Coaquira
    • 4
  • S. K. Sharma
    • 5
    Email author
  1. 1.Department of PhysicsFederal University of MaranhaoSao LuisBrazil
  2. 2.Institute of PhysicsFederal University of GoiasGoiâniaBrazil
  3. 3.Department of Physics, Magnetic Materials LaboratoryUniversity of Agriculture FaisalabadFaisalabadPakistan
  4. 4.Laboratory of Magnetic Materials, NFA, Institute of PhysicsUniversity of BrasiliaBrasiliaBrazil
  5. 5.Department of Physics, the Faculty of Science and TechnologyThe University of West IndiesSt. AugustineTrinidad and Tobago

Personalised recommendations