Analysis of MEMS and Metamaterial Based Sensors and Its Involvement in Nanotechnology

  • Bhupendra SharmaEmail author
  • Shraddha GuptaEmail author
  • Ashwani YadavEmail author
  • Rahul RunthalaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1122)


MEMS is very smart and highly demanding field of technology and wide range of applications are prevailing, it includes electrical and mechanical components with the micro range size. In this review paper different sensors are included with critical analysis of idea, Along with categorization of various sensors and their behavior enclosed with result analysis. The comparative study with various angles in terms of the sensing capability, application, and features with parameter Study in proper context. This paper is specifically focused on “metamaterial” based sensors it is newly generated technology and emerging field of research point of view that are the integral part of developing material, metamaterial as absorber, flexible metamaterial sensor domain technology with several applications. The major advantages, disadvantages and big challenges in the path of technology advancement have also been discussed in detail. Furthermore there is also expanded description of the applicability of MEMS and Metamaterial based sensors in versatile area like bionic sensors, structural health monitoring indicated in different fields with analytical manner.


MEMS Metamaterial Accelerometer Bionic sensor and structural health monitoring 


  1. 1.
    Chen, T., Li, S., Sun, H.: Metamaterial application in sensing. Sensors 12, 2742–2765 (2012). ISSN 14248220CrossRefGoogle Scholar
  2. 2.
    Swartz, R.A., Lynch, J.P., Zerbst, S., Sweetman, B., Rolfes, R.: Structural monitoring of wind turbines using wireless sensor networks. Smart Struct. Syst. 6(3), 183–196 (2010)CrossRefGoogle Scholar
  3. 3.
    Patil, P.K., Patil, S.R.: Structural health monitoring system using WSN for bridges. In: International Conference on Intelligent Computing and Control Systems, ICICCS. IEEE (2017). ISBN: 978-1-5386-2745-7/17Google Scholar
  4. 4.
    Ozbey, B., Unal, E.: Wireless displacement sensing enabled by metamaterial probes for remote structural health monitoring. Sensors 14, 1691–1704 (2014). ISSN 1424–8220CrossRefGoogle Scholar
  5. 5.
    Liu, Z.W., Fang, N., Yen, T.J., Zhang, X.: Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett. 83, 5184–5186 (2003)CrossRefGoogle Scholar
  6. 6.
    Griguer, H., Tentzeris, M.M., Nauroze, A., Drissi, M.: A novel ultra-thin flexible metamaterial absorber for human body protection from EMF hazards. In: 32nd URSI GASS, Montreal, 19–26 August 2017 (2017)Google Scholar
  7. 7.
    Dadafshar, M.: Accelerometer and Gyroscope sensors: operation, sensing and application, Maximum integrated (2014).
  8. 8.
    del Cueto Belchi, A., Garcia Rodriguez, D., Rothpfeffer, N., Pelegri Sebastiá, J., Chilo, J.: Multi-sensor olfactory system. In: 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, pp. 1139–1141 (2012)Google Scholar
  9. 9.
    Liu, R., Ji, C., Zhao, Z., Zhou, T.: Advance materials and material genome-review metamaterial: reshape and rethink (2015).
  10. 10.
    Gervais-Ducouret, S.: Next smart sensors generation. IEEE (2011). ISBN: 978-1-4244-8064-7/11/2011Google Scholar
  11. 11.
    Yuce, M.R.: Recent wireless body sensors: design and implementation. In: IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO) (2013)Google Scholar
  12. 12.
    Wilson, A.D., Baietto, M.: Applications and advances in electronic-nose technologies. Sensors 9, 5099–5148 (2009). ISSN 1424-8220CrossRefGoogle Scholar
  13. 13.
    Pister, K.S.J.: Lecture notes “On the Limits and Applications of MEMS Sensor Networks”, UC Berkeley. Accessed 29 Apr 2018
  14. 14.
    Raicu, I.: MEMS a technology overview and limitations. In: CSC8800, p. 122, September 2004. Brigham Young University, USA
  15. 15.
    Wilson, A.D.: Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 5(140–163), 140–163 (2015)CrossRefGoogle Scholar
  16. 16.
    Anitha, M.: Sensor grid based vision status monitoring in eye care system. Int. J. Future Comput. Commun. 1(1), 57–61 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Filimon, D.-M.: Skin diseases diagnosis using artificial neural networks. In: 9th IEEE International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 15–17 May 2014, pp. 189–194 (2014)Google Scholar
  18. 18.
    Bi, Y., Lv, M.: AutoDietary: a wearable acoustic sensor system for food intake recognition in daily life. IEEE Sens. J. 16(3), 806–816 (2016)CrossRefGoogle Scholar
  19. 19.
    Pérez, J.J., Saldarriaga, A.J., Bustamante, J.: A wireless body sensor network platform to measure vital signs in clinical monitoring. In: 2013 Pan American Health Care Exchanges (PAHCE), Medellin, Colombia, 29 April–4 May 2013 (2013). IEEE Catalog Number: CFP1318G-art, ISBN: 978-1-4673-6257Google Scholar
  20. 20.
    Giammarini, M., Isidori, D., Pieralisi, M.: Design of wireless sensor network for real-time structural health monitoring. In: IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits and Systems. IEEE (2015). ISBN: 978-1-4799-6780-3/2015
  21. 21.
    Li, X., Cui, H.: Experimental study of structural health monitoring methods based on piezoelectric element array. IEEE (2017). ISBN: 978-5090-5363-6/17Google Scholar
  22. 22.
    Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)CrossRefGoogle Scholar
  23. 23.
    Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Low frequency plasmons in thin-wire structures. J. Phys.: Condens. Matter 10, 4785–4809 (1998)Google Scholar
  24. 24.
    Marcus, S.W., Schwartz, C., Naor, M.: Metamaterials and their applications (2009). Manor division, Rafael, Haifa, IsraelGoogle Scholar
  25. 25.
    Jakšic, Z., Jakšic, O., Matovic, J.: Performance limits to the operation of nanoplasmonic chemical sensors-noise equivalent refractive index and detectivity. J. Nanophoton 3, 031770 (2009)CrossRefGoogle Scholar
  26. 26.
    Homola, J., Piliarik, M.: Surface plasmon resonance (SPR) sensors. In: Homola, J., (ed.) Surface Plasmon Resonance Based Sensors, vol. 159, pp. 45–67. Springer, Berlin (2006)Google Scholar
  27. 27.
    Jakšić, Z., Djurić, Z.: Cavity enhancement of auger-suppressed detectors: a way to background-limited room-temperature operation in 3–14 μm range. IEEE J. Sel. Top. Quantum Electron. 10, 771–776 (2004)CrossRefGoogle Scholar
  28. 28.
    Annamdas, V.G.M., Soh, C.K.: Application of electromechanical impedance technique for engineering structures: review and future issues. J. Intell. Mater. Syst. Struct. 21(1), 41–59 (2010)CrossRefGoogle Scholar
  29. 29.
    Annamdas, V.G.M., Radhika, M.A.: Electromechanical impedance of piezoelectric transducers for monitoring metallic and non metallic structures: a review of wired, wireless and energy harvesting methods. J. Intell. Mater. Syst. Struct. 24(9), 1019–1040 (2013)CrossRefGoogle Scholar
  30. 30.
    Cho, S., Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer Jr., B.F., Nagayama, T.: Smart wireless sensor technology for structural health monitoring of civil structures. Steel Struct. 8, 267–275 (2008)Google Scholar
  31. 31.
    Smith, D.R.: A cloaking coating for murky media. Science 345, 384 (2014)CrossRefGoogle Scholar
  32. 32.
    Annamdas, V.G.M., Soh, C.K.: Influence of loading on the near field based passive metamaterial. Struct. Health Monit. (2015). Scholar
  33. 33.
    Chidambaram, R.: Material Research and Technology Foresight, S.B. Krupanidhi, MRC, IISc, Bangalore Smart Sensors and Actuators page no. 543Google Scholar
  34. 34.
    Hosseinzadeh, H.R.S., Hosseinzadeh, H.: Metamaterials in medicine: a new era for future orthopedics. Ortho. Res. Online J. 2(5) (2018).
  35. 35.
    Bilotti, F., Sevgi, L.: Metamaterials definitions, properties, applications, and FDTD-based modeling and simulation. Int. J. RF Microw. Comput. Aided Eng. 22(4) (2012).
  36. 36.
    La Spada, L., Bilotti, F., Vegni, L.: Metamaterial biosensor for cancer detection (2011). ISBN: 978-1-4244-9289-3/11/$26.00 ©IEEEGoogle Scholar
  37. 37.
    Wang, G., Gong, Y.: Metamaterial lens applicator for microwave hyperthermia of breast cancer. Int. J. Hyperth. 25(6), 434–445 (2009). Scholar
  38. 38.
    Cheng, X., David, E., Kim, C., Yoon, Y.-K.: A compact omnidirectional self-packaged patch antenna with complementary split-ring resonator loading for wireless endoscope applications. IEEE Antennas Wirel. Propag. Lett. 10, 1532–1535 (2011)CrossRefGoogle Scholar
  39. 39.
    Castro, P.J., Barroso, J.J., Leite Neto, J.P.: Experimental Study on split ring Resonator with different slit widths. J. Electromagn. Anal. Appl. 5, 366 (2013). Scholar
  40. 40.
    Karmakar, N.C., Amin, E.M., Saha, J.K.: Chipless RFID sensor for real time environment monitoring (2016).

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Amity School of Engineering and TechnologyAmity University RajasthanJaipurIndia
  2. 2.B.K. Birla Institute of Engineering and TechnologyPilaniIndia

Personalised recommendations