Advertisement

Breaking of Scale Invariance in Correlation Functions of Turbulence

  • Malo TarpinEmail author
Chapter
  • 15 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter we turn to the study of the stochastic Navier–Stokes field theory. As in the previous chapter, we work in the framework of the NPRG. However, the tools used are completely different. We use a large wave-number expansion of the exact RG flow equation in order to investigate the time-dependence of (generalized) correlation functions in 2- and \(3\)-D  turbulence, and the possibility of intermittency in the direct cascade of \(2\)-D  turbulence.

References

  1. Adzhemyan LT, Antonov NV, Vasil’ev AN (1999) The field theoretic renormalization group in fully developed turbulence. Gordon and Breach, LondonzbMATHGoogle Scholar
  2. Adzhemyan L, Antonov N, Kim TL (1994) Composite Operators, operator expansion, and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to Kolmogorov scaling. Theor Math Phys 100:1086Google Scholar
  3. Antonov NV (1994) Possible deviations from the Kolmogorov spectrum of developed turbulence. Zh Eksp Teor Fiz 105:614Google Scholar
  4. Antonov NV, Borisenok SV, Girina VI (1996) Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension. Theor Math Phys 106:75Google Scholar
  5. Benitez F et al (2012) Nonperturbative renormalization group preserving full- momentum dependence: implementation and quantitative evaluation. Phys Rev E 85(2):026707.  https://doi.org/10.1103/PhysRevE.85.026707ADSMathSciNetCrossRefGoogle Scholar
  6. Berera A, Hochberg D (2007) Gauge symmetry and Slavnov-Taylor identities for randomly stirred fluids. Phys Rev Lett 99:254–501.  https://doi.org/10.1103/PhysRevLett.99.254501CrossRefGoogle Scholar
  7. Berges J, Tetradis N, Wetterich C (2002) Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys Rep 363(4–6):223–386. Renormalization group theory in the new millennium. IV.  https://doi.org/10.1016/S0370-1573(01)00098-9
  8. Blaizot J-P, Méndez-Galain R, Wschebor N (2006) A new method to solve the non-perturbative renormalization group equations. Phys Lett B 632(4):571–578.  https://doi.org/10.1016/j.physletb.2005.10.086ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Boffetta G et al (2002) Intermittency in two-dimensional Ekman-Navier-Stokes turbulence. Phys Rev E 66(2):026304.  https://doi.org/10.1103/PhysRevE.66.026304ADSMathSciNetCrossRefGoogle Scholar
  10. Canet L, Delamotte B, Wschebor N (2015) Fully developed isotropic tur- bulence: symmetries and exact identities. Phys Rev E 91(5):053004.  https://doi.org/10.1103/PhysRevE.91.053004ADSMathSciNetCrossRefGoogle Scholar
  11. Canet L, Delamotte B, Wschebor N (2016) Fully developed isotropic turbulence: nonperturbative renormalization group formalism and fixed-point solution. Phys Rev E 93(6):063101.  https://doi.org/10.1103/PhysRevE.93.063101ADSCrossRefGoogle Scholar
  12. Canet L et al (2017) Spatiotemporal velocity-velocity correlation function in fully developed turbulence. Phys Rev E 95(2):023107.  https://doi.org/10.1103/PhysRevE.95.023107ADSMathSciNetCrossRefGoogle Scholar
  13. Chen S, Kraichnan RH (1989) Sweeping decorrelation in isotropic turbulence. Phys Fluids A 1(12):2019–2024.  https://doi.org/10.1063/1.857475
  14. Chevillard L et al (2005) Statistics of fourier modes of velocity and vorticity in turbulent flows: intermittency and long-range correlations. Phys Rev Lett 95(20):200203.  https://doi.org/10.1103/PhysRevLett.95.200203ADSCrossRefGoogle Scholar
  15. Collins JC (1984) Breaking of scale invariance in correlation functions of turbulence graphs on Mathematical Physics (Cambridge Mono- 136 Chapter 5). Renormalization: an introduction to renormalization, the renormalization group and the operator-product expansion. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511622656
  16. De Dominicis C, Martin PC (1979) Energy spectra of certain randomly- stirred fluids. Phys Rev A 19(1):419–422.  https://doi.org/10.1103/PhysRevA.19.419ADSCrossRefGoogle Scholar
  17. Debue P et al (2018) Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow. Phys Rev Fluids 3(2):024602.  https://doi.org/10.1103/PhysRevFluids.3.024602ADSCrossRefGoogle Scholar
  18. Favier B, Godeferd FS, Cambon C (2010) On space and time correlations of isotropic and rotating turbulence. Phys. Fluids 22(1):015101.  https://doi.org/10.1063/1.3276290ADSCrossRefzbMATHGoogle Scholar
  19. Gotoh T et al (1993) Lagrangian velocity correlations in homogeneous isotropic turbulence. Phys Fluids A 5(11):2846–2864.  https://doi.org/10.1063/1.858748ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. He G-W, Wang M, Lele SK (2004) On the computation of space-time correlations by large-eddy simulation. Phys Fluids 16(11):3859–3867.  https://doi.org/10.1063/1.1779251ADSCrossRefzbMATHGoogle Scholar
  21. Honkonen J (1998) Asymptotic behavior of the solution of the two-dimensional stochastic vorticity equation. Phys Rev E 58(4):4532–4540.  https://doi.org/10.1103/PhysRevE.58.4532ADSMathSciNetCrossRefGoogle Scholar
  22. Kraichnan RH (1959) The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech 5(4):497–543.  https://doi.org/10.1017/S0022112059000362ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. Lohse D, Müller-Groeling A (1995) Bottleneck effects in turbulence: scaling phenomena in r versus p space. Phys Rev Lett 74(10):1747–1750.  https://doi.org/10.1103/PhysRevLett.74.1747ADSCrossRefGoogle Scholar
  24. Mayo JR (2005) Field theory of the inverse cascade in two-dimensional turbulence. Phys Rev E 72(5):056316.  https://doi.org/10.1103/PhysRevE.72.056316ADSMathSciNetCrossRefGoogle Scholar
  25. Nelkin M, Tabor M (1990) Time correlations and random sweeping in isotropic turbulence. Phys Fluids A Fluid Dyn 2(1):81–83.  https://doi.org/10.1063/1.857684ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. Olla P (1991) Renormalization-group analysis of two-dimensional incompressible turbulence. Phys Rev Lett 67(18):2465–2468.  https://doi.org/10.1103/PhysRevLett.67.2465ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. Orszag SA, Patterson GS (1972) Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys Rev Lett 28(2):76–79.  https://doi.org/10.1103/PhysRevLett.28.76ADSCrossRefGoogle Scholar
  28. Poulain C et al (2006) Dynamics of spatial Fourier modes in turbulence. Eur Phys J B 53(2):219–224.  https://doi.org/10.1140/epjb/e2006-00354-yADSCrossRefGoogle Scholar
  29. Sanada T, Shanmugasundaram V (1992) Random sweeping effect in isotropic numerical turbulence. Phys Fluids A Fluid Dyn 4(6):1245–1250.  https://doi.org/10.1063/1.858242ADSCrossRefGoogle Scholar
  30. Tarpin M, Canet L, Wschebor N (2018) Breaking of scale invariance in the time dependence of correlation functions in isotropic and homogeneous turbulence. Phys Fluids 30(5):055102.  https://doi.org/10.1063/1.5020022ADSCrossRefGoogle Scholar
  31. Tarpin M et al (2019) Stationary, isotropic and homogeneous two-dimensional turbulence: a first non-perturbative renormalization group approach. J Phys A Math Theor 52(8):085501.  https://doi.org/10.1088/1751-8121/aaf3f0ADSMathSciNetCrossRefGoogle Scholar
  32. Tennekes H (1975) Eulerian and Lagrangian time microscales in isotropic turbulence. J Fluid Mech 67(03):561–567.  https://doi.org/10.1017/S0022112075000468ADSCrossRefzbMATHGoogle Scholar
  33. Yakhot V, Orszag SA, She Z-S (1989) Space-time correlations in turbulence: kinematical versus dynamical effects. Phys Fluids A 1(2):184–186.  https://doi.org/10.1063/1.857486ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut für Theoretische Physik der Universität HeidelbergHeidelbergGermany

Personalised recommendations