Universal Behaviors in the Diffusive Epidemic Process and in Fully Developed Turbulence

  • Malo TarpinEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, the phenomenology and challenges of the two systems studied as part of the thesis work are presented. Firstly, in Sect. 2.1 we give a short account on the physics of the diffusive epidemic process and in particular of the phase transition between a fluctuating state and an absorbing state that this system undergoes. We take the time to present the existing literature on the subject and to uncover some remaining issues in the established description of this system. Secondly, in Sect. 2.2 after giving the general phenomenology and challenges of fully developed turbulence in fluids, we focus on the two subjects studied here: the time-dependence of correlation functions in both two- and three-dimensional turbulence, and the existence of intermittency in two-dimensional turbulence.


  1. Adzhemyan LD, Vasil’ev AN, Pis’mak YM (1983) Renormalization group approach in the theory of turbulence: the dimensions of composite operators. Theor Math Phys 57(2):1131–1141. Scholar
  2. Adzhemyan L, Vasil’ev AN, Gnatich M (1988) Renormalisation group approach in the theory of turbulence: renormalisation and critical dimensions of the composite operators of the energy-momentum tensor. Theor Math Phys 74:115. Scholar
  3. Adzhemyan LT, Antonov NV, Vasil’ev AN (1989) Infrared divergences and the renormalization group in the theory of fully developed turbulence. Zh Eksp Teor Fiz 95:1272ADSGoogle Scholar
  4. Adzhemyan LT, Antonov NV, Vasil’ev AN (1998) Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar. Phys Rev E 58(2):1823–1835. Scholar
  5. Anselmet F et al (1984) High-order velocity structure functions in turbulent shear flows. J Fluid Mech 140:63–89. Scholar
  6. Antonov NV (1991) Infrared asymptote of velocity correlator in turbulence theory. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR 189:15–23Google Scholar
  7. Antonov NV (1994) Possible deviations from the Kolmogorov spectrum of developed turbulence. Zh Eksp Teor Fiz 105:614Google Scholar
  8. Antonov NV (2006) Renormalization group, operator product expansion and anomalous scal- ing in models of turbulent advection. J Phys A: Math Gen 39(25):7825ADSCrossRefGoogle Scholar
  9. Antonov NV, Borisenok SV, Girina VI (1996) Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension. Theor Math Phys 106:75Google Scholar
  10. Antonov NV et al (2018) Statistical symmetry restoration in fully developed turbulence: renormalization group analysis of two models. Phys Rev E 97(3):033101. Scholar
  11. Ashurst WT et al (1987) Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys Fluids 30(8):2343–2353. Scholar
  12. Babelon O, Bernard D, Talon M (2003) Introduction to classical integrable systems. Cambridge University Press, Cambridge, Cambridge monographs on mathematical physics. Scholar
  13. Babiano A, Dubrulle B, Frick P (1995) Scaling properties of numerical two-dimensional turbulence. Phys Rev E 52(4):3719–3729. Scholar
  14. Bacry E, Muzy J (2003) Log-infinitely divisible multifractal processes. Commun Math Phys 236(3):449–475. Scholar
  15. Batchelor GK (1969) Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys Fluids 12(12):II–233–II–239.
  16. Batchelor GK, Townsend AA (1949) The nature of turbulent motion at large wave-numbers. 199(1057):238–255.
  17. Belinicher VI, L’vov VS, (1987) A scale-invariant theory of fully developed hydrodynamic turbulence. Zh Eksp Teor Fiz 93:533Google Scholar
  18. Benzi R et al (1984) On the multifractal nature of fully developed turbulence and chaotic systems. J Phys A: Math Gen 17(18):3521. Scholar
  19. Benzi R et al (1991) Multifractality in the statistics of the velocity gradients in turbulence. Phys Rev Lett 67(17):2299–2302. Scholar
  20. Benzi R et al (1993) A random process for the construction of multiaffine fields. Phys D: Nonlinear Phenom 65(4):352–358. Scholar
  21. Bernard D (1999) Three-point velocity correlation functions in two-dimensional forced turbulence. Phys Rev E 60(5):6184–6187. Scholar
  22. Bernard D (2000) Influence of friction on the direct cascade of the 2D forced turbulence. Europhys Lett 50(3):333–339. Scholar
  23. Bertini L et al (2015) Macroscopic fluctuation theory. Rev Mod Phys 87(2):593–636. Scholar
  24. Bertrand D et al (2007) Critical behavior of a two-species reaction-diffusion problem in 2D. Phys A: Stat Mech Its Appl 386(2):748–751. Scholar
  25. Boffetta G et al (2002) Intermittency in two-dimensional Ekman-Navier-Stokes turbulence. Phys Rev E 66(2):026304. Scholar
  26. Bowman J C, Krommes JA, Ottaviani M (1993) The realizable Markovian closure. I. General theory, with application to three-wave dynamics. Phys Fluids B: Plasma Phys 5(10):3558–3589.
  27. Bruneau CH, Kellay H (2005) Experiments and direct numerical simulations of two-dimensional turbulence. Phys Rev E 71(4):046305. Scholar
  28. Canet L, Delamotte B, Wschebor N (2015) Fully developed isotropic tur- bulence: symmetries and exact identities. Phys Rev E 91(5):053004. Scholar
  29. Canet L, Delamotte B, Wschebor N (2016) Fully developed isotropic turbulence: nonperturbative renormalization group formalism and fixed-point solution. Phys Rev E 93(6):063101. Scholar
  30. Canet L et al (2005) Nonperturbative fixed point in a nonequilibrium phase transition. Phys Rev Lett 95(10):100601. Scholar
  31. Canet L et al (2011) Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: general framework and first applications. Phys Rev E 84(6):061128. Scholar
  32. Canet L et al (2017) Spatiotemporal velocity-velocity correlation function in fully developed turbulence. Phys Rev E 95(2):023107. Scholar
  33. Cardy JL, Täuber UC (1998) Field theory of branching and annihilating random walks. J Stat Phys 90(1):1–56. Scholar
  34. Castaing B, Gagne Y, Hopfinger E (1990) Velocity probability density functions of high Reynolds number turbulence. Phys D: Nonlinear Phenom 46(2):177–200. Scholar
  35. Chandrasekhar S (1955) A theory of turbulence. 229(1176):1–19. Scholar
  36. Chen S, Kraichnan RH (1989) Sweeping decorrelation in isotropic turbulence. Phys Fluids A 1(12):2019–2024. Scholar
  37. Chevillard L (2015) A random painting of fluid turbulence. Habilitation à diriger des recherches, ENS LyonGoogle Scholar
  38. Chevillard L et al (2006) Unified multifractal description of velocity increments statistics in turbulence: intermittency and skewness. Phys D: Nonlinear Phenom 218(1):77–82. Scholar
  39. Chevillard L, Robert R, Vargas V (2010) A stochastic representation of the local structure of turbulence. EPL (Eurphys Lett) 89(5):54002. Scholar
  40. Chevillard L et al (2012) A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows. Comptes Rendus Phys 13(9). Structures and statistics of fluid turbulence/Structures et statistiques de la turbulence des fluides, pp 899–928.
  41. Corrsin S (1962) Turbulent dissipation fluctuations. Phys Fluids 5(10):1301–1302. Scholar
  42. Collins JC (1984) Renormalization: an introduction to renormalization, the renormalization group and the operator-product expansion. Cambridge University Press, Cambridge, Cambridge monographs on mathematical physics.
  43. Davidson P et al (eds) (2011) A voyage through turbulence. Cambridge University Press, Cambridge.
  44. De Dominicis C, Martin PC (1979) Energy spectra of certain randomly-stirredfluids. Phys Rev A 19(1):419–422. Scholar
  45. Debue P et al (2018) Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow. Phys Rev Fluids 3(2):024602. Scholar
  46. Desnianskii V, Novikov E (1974) Simulation of cascade processes in turbulent flows. J Appl Math Mech 38(3):468–475. Scholar
  47. Dickman R (1994) Numerical study of a field theory for directed percolation. Phys Rev E 50(6):4404–4409. Scholar
  48. Dickman R, Maia DS (2008) The nature of the absorbing-state phase transition in the diffusive epidemic process. J Phys A: Math Theor 41(40):405002\(+\).
  49. Dombre T (2010) Bose-like condensation of Lagrangian particles and higher-order statistics in passive scalar turbulent advection. EPL (Eurphys Lett) 91(5):54002. Scholar
  50. Dryden HL et al (1937) Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres. NACA Rep 581:109–140Google Scholar
  51. Dubrulle B (1994) Intermittency in fully developed turbulence: log-Poisson statistics and generalized scale covariance. Phys Rev Lett 73(7):959–962. Scholar
  52. Elgart V, Kamenev A (2006) Classification of phase transitions in reaction-diffusion models. Phys Rev E 74(4):041101. Scholar
  53. Euler L (1757) Principes généraux du mouvement des fluides. Mém l’Académie R Sci Belles Lett Berl 11:274–315Google Scholar
  54. Eyink GL (1996) Exact results on stationary turbulence in 2D: consequences of vorticity conservation. Phys D: Nonlinear Phenom 91(1):97–142. Scholar
  55. Eyink GL, Sreenivasan KR (2006) Onsager and the theory of hydro-dynamic turbulence. Rev Mod Phys 78(1):87–135. Scholar
  56. Falkovich G, Fouxon I, Oz Y (2010) New relations for correlation functions in Navier-Stokes turbulence. J Fluid Mech 644:465–472. Scholar
  57. Falkovich G et al (1996) Instantons and intermittency. Phys Rev E 54(5):4896–4907. Scholar
  58. Falkovich G, Gawȩdzki K, Vergassola M (2001) Particles and fields in fluid turbulence. Rev Mod Phys 73(4):913–975. Scholar
  59. Falkovich G, Lebedev V (1994a) Nonlocal vorticity cascade in two dimensions. Phys Rev E 49(3):R1800–R1803.
  60. Falkovich G, Lebedev V (1994b) Universal direct cascade in two-dimensional turbulence. Phys Rev E 50(5):3883–3899.
  61. Favier B, Godeferd FS, Cambon C (2010) On space and time correlations of isotropic and rotating turbulence. Phys Fluids 22(1):015101. Scholar
  62. Forster D, Nelson DR, Stephen MJ (1977) Large-distance and long-time properties of a randomly stirred fluid. Phys Rev A 16(2):732–749. Scholar
  63. Fournier JD, Frisch U (1983) Remarks on the renormalization group in statistical fluid dynamics. Phys Rev A 28(2):1000–1002. Scholar
  64. de Freitas JE et al (2000) Critical behavior of a two-species reaction-diffusion problem. Phys Rev E 61(6):6330–6336. Scholar
  65. de Freitas J et al (2001) Reply to “Comment on ‘Critical behavior of a two-species reaction-diffusion problem”’. Phys Rev E 64(5).
  66. Frisch U (1995) Turbulence: the legacy of AN Kolmogorov. Cambridge University Press, Cambridge. Scholar
  67. Frisch U, Morf R (1981) Intermittency in nonlinear dynamics and singularities at complex times. Phys Rev A 23(5):2673–2705. Scholar
  68. Frisch U, Vergassola M (1991) A prediction of the multifractal model: the intermediate dissipation range. Europhys Lett (EPL) 14(5):439–444. Scholar
  69. Frisch U, Sulem P-L, Nelkin M (1978) A simple dynamical model of inter- mittent fully developed turbulence. J Fluid Mech 87(4):719–736. Scholar
  70. Fulco U, Messias D, Lyra M (2001a) Critical behavior of a one-dimensional diffusive epidemic process. Phys Rev E 63(6).
  71. Fulco UL, Messias DN, Lyra ML (2001b) Monte Carlo study of the critical behavior of a diffusive epidemic process. Phys A: Stat Mech Its Appl 295(1–2):49–52.
  72. Gardiner CW et al (1976) Correlations in stochastic theories of chemical re-actions. J Stat Phys 14(4):307–331. Scholar
  73. Gawȩdzki K, Kupiainen A (1995) Anomalous scaling of the passive scalar. Phys Rev Lett 75(21):3834–3837. Scholar
  74. Giles MJ (2001) Anomalous scaling in homogeneous isotropic turbulence. J Phys A: Math Gen 34(21):4389–4435. Scholar
  75. Grassberger P (1982) On phase transitions in Schlögl’s second model. Z Phys B 47(4):365–374.
  76. Gutowitz HA, Victor JD, Knight BW (1987) Local structure theory for cellular automata. Phys D 28(1–2):18–48.
  77. Halsey TC et al (1986) Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 33(2):1141–1151. Scholar
  78. He G-W, Wang M, Lele SK (2004) On the computation of space-time correlations by large-eddy simulation. Phys Fluids 16(11):3859–3867. Scholar
  79. Heisenberg W (1948) On the statistical theory of turbulence. Z Phys 124:628ADSCrossRefGoogle Scholar
  80. Hinrichsen H (2000) Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv Phys 49(7):815–958. Scholar
  81. Janssen HK (1981) On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state. Z Phys B Condens Matter 42(2):151–154. Scholar
  82. Janssen HK (2001) Comment on “Critical behavior of a two-species reaction-diffusion problem”. Phys Rev E Stat Nonlinear Soft Matter Phys 64(5) Pt 2.
  83. Janssen H-K, Stenull O (2016) Directed percolation with a conserved field and the depinning transition. Phys Rev E 94(4):042138. Scholar
  84. Jensen I (1999) Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice. J Phys A: Math Gen 32(28):5233–5249.
  85. Kahalerras H et al (1998) Intermittency and Reynolds number. Phys Fluids 10(4):910–921. Scholar
  86. Kampen NV (2007) Stochastic processes in physics and chemistry, 3rd edn. North Holland.
  87. von Kármán T (1937) The fundamentals of the statistical theory of turbulence. J Aeronaut Sci 4(4):131–138. Scholar
  88. von Kármán T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164(917):192–215. Scholar
  89. Kolmogorov A et al (1991) A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In: Tikhomirov VM (ed) Selected works of AN Kolmogorov: Volume I: Mathematics and mechanics. Springer Netherlands, Dordrecht, pp 242–270.
  90. Kolmogorov AN (1941a) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:16Google Scholar
  91. Kolmogorov AN (1941b) The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl Akad Nauk SSSR 30:299Google Scholar
  92. Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13(1):82–85. Scholar
  93. Kraichnan RH (1959) The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech 5(4):497–543. Scholar
  94. Kraichnan RH (1964) Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys Fluids 7(11):1723. Scholar
  95. Kraichnan RH (1965) Lagrangian-history closure approximation for turbulence. Phys Fluids 8(4):575–598. Scholar
  96. Kraichnan RH (1967a) Inertial ranges in two-dimensional turbulence. Phys Fluids 10(7):1417–1423.
  97. Kraichnan RH (1967b) Intermittency in the very small scales of turbulence. Phys Fluids 10(9):2080–2082.
  98. Kraichnan RH (1968) Small-scale structure of a scalar field convected by turbulence. Phys Fluids 11(5):945–953. Scholar
  99. Kraichnan RH (1971) Inertial-range transfer in two and three-dimensional turbulence. J Fluid Mech 47(3):525–535. Scholar
  100. Kraichnan RH (1974) On Kolmogorov’s inertial-range theories. J Fluid Mech 62(2):305–330. Scholar
  101. Kraichnan RH (1982) Hydrodynamic turbulence and the renormalization group. Phys Rev A 25(6):3281–3289. Scholar
  102. Kraichnan RH (1994) Anomalous scaling of a randomly advected passive scalar. Phys Rev Lett 72(7):1016–1019. Scholar
  103. Kree R, Schaub B, Schmittmann B (1989) Effects of pollution on critical population dynamics. Phys Rev A 39(4):2214–2221. Scholar
  104. Krommes JA (2002) Fundamental statistical descriptions of plasma turbulence in magnetic fields. Phys Rep 360(1):1–352. Scholar
  105. Kuo AY-S, Corrsin S (1971) Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid. J Fluid Mech 50(2):285–319. Scholar
  106. Kurtz TG (1978) Strong approximation theorems for density dependent Markov chains. Stoch Process Their Appl 6(3):223–240. Scholar
  107. Le Doussal P, Wiese KJ (2015) Exact mapping of the stochastic field theory for Manna sandpiles to interfaces in random media. Phys Rev Lett 114(11):110601. Scholar
  108. Lee TD (1951) Difference between turbulence in a two-dimensional fluid and in a three-dimensional fluid. J Appl Phys 22(4):524. Scholar
  109. Leith CE (1968) Diffusion approximation for two-dimensional turbulence. Phys Fluids 11(3):671–672.
  110. Lesieur M (2008) Turbulence in fluids, 4th edn. Springer, Berlin.
  111. L’vov VS, Lebedev VV, (1993) Exact relations in the theory of developed hydrodynamic turbulence. Phys Rev E 47(3):1794–1802.
  112. L’vov V, Procaccia I (1995) Exact resummations in the theory of hydrodynamic turbulence. I. The ball of locality and normal scaling. Phys Rev E 52(4):3840–3857.
  113. Maia DS, Dickman R (2007) Diffusive epidemic process: theory and simulation. J Phys: Condens Matter 19:065143. Scholar
  114. Mandelbrot BB (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62(2):331–358. Scholar
  115. Mandelbrot BB (1991) Random multifractals: negative dimensions and the resulting limitations of the thermodynamic formalism. Proc: Math Phys Sci 434(1890):79–88.
  116. Marro J, Dickman R (1999) Nonequilibrium phase transitions in lattice models. Collection alea-saclay monographs and texts in statistical physics. Cambridge University Press, Cambridge.
  117. Mazzino A, Muratore-Ginanneschi P (2009) Musacchio S (2009) Scaling regimes of 2D turbulence with power-law stirring: theories versus numerical experiments. J Stat Mech: Theory Exp 10:P10012. Scholar
  118. Mejía-Monasterio C, Muratore-Ginanneschi P (2012) Nonperturbative renormalization group study of the stochastic Navier-Stokes equation. Phys Rev E 86(1):016315.
  119. Meneveau C (1996) Transition between viscous and inertial-range scaling of turbulence structure functions. Phys Rev E 54(4):3657–3663. Scholar
  120. Meneveau C, Sreenivasan KR (1991) The multifractal nature of turbulent energy dissipation. J Fluid Mech 224:429–484. Scholar
  121. Millionschikov M (1941) On the theory of homogeneous isotropic turbulence. Dokl Akad Nauk SSSR 32:615–618MathSciNetGoogle Scholar
  122. Monin AS, Yaglom AM (1973) Statistical Fluid Mechanics: mechanics of turbulence. Volume 2, 2nd edn. MIT Press, CambridgeGoogle Scholar
  123. Muzy JF, Bacry E, Arneodo A (1993) Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E 47(2):875–884. Scholar
  124. Nam K et al (2000) Lagrangian chaos and the effect of drag on the enstrophy cascade in two-dimensional turbulence. Phys Rev Lett 84(22):5134–5137. Scholar
  125. Navier CLMH (1823) Mémoire sur les lois du mouvement des fluides. Mém l’Académie R Sci 6:389–416Google Scholar
  126. Nelkin M (1990) Multifractal scaling of velocity derivatives in turbulence. Phys Rev A 42(12):7226–7229. Scholar
  127. Nelkin M, Tabor M (1990) Time correlations and random sweeping in isotropic turbulence. Phys Fluids A: Fluid Dyn 2(1):81–83. Scholar
  128. Novikov EA, Stewart RW (1964) The intermittency of turbulence and the spectrum of energy dissipation fluctuations. Izv Acad Sci USSR Beophys Ser 408(3):Google Scholar
  129. Obukhov AM (1941) On the spectral energy distribution in a turbulent flow. Izv Akad Nauk SSSR, Geogr Geofiz, p 5Google Scholar
  130. Obukhov AM (1962) Some specific features of atmospheric turbulence. J Geophys Res 67(8):3011–3014. Scholar
  131. Ódor G (2004) Universality classes in nonequilibrium lattice systems. Rev Mod Phys 76(3):663–724. Scholar
  132. Oerding K et al (2000) Fluctuation induced first-order transition in a nonequilibrium steady state. J Stat Phys 99:1365. Scholar
  133. Ohkitani K, Yamada M (1989) Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully-developed model turbulence. Prog Theor Phys 81:329–341. Scholar
  134. Onsager L (1949) Statistical hydrodynamics. Il Nuovo Cim (1943–1954) 6(2):279–287.
  135. Orszag SA, Patterson GS (1972) Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys Rev Lett 28(2):76–79. Scholar
  136. Pagani C (2015) Functional renormalization group approach to the Kraichnan model. Phys Rev E 92(3):033016. Scholar
  137. Paladin G, Vulpiani A (1987) Degrees of freedom of turbulence. Phys Rev A 35(4):1971–1973. Scholar
  138. Paret J, Jullien M-C, Tabeling P (1999) Vorticity statistics in the two-dimensional enstrophy cascade. Phys Rev Lett 83(17):3418–3421. Scholar
  139. Parisi G, Frisch U (1985) On the singularity structure of fully developed turbulence. Turbulence and predictability in geophysical fluid dynamics and climate dynamics. In: Ghil M, Benzi R, Parisi G (eds), pp 84–87. North-HollandGoogle Scholar
  140. Pereira RM, Moriconi L, Chevillard L (2018) A multifractal model for the velocity gradient dynamics in turbulent flows. J Fluid Mech 839:430–467. Scholar
  141. Poulain C et al (2006) Dynamics of spatial Fourier modes in turbulence. Eur Phys J B 53(2):219–224. Scholar
  142. Prandtl L (1938) Beitrag zum Turbulenzsymposium. In: Hartog JD, Peters H (eds) Proceedings of the 5th international congress on applied mechanics, Cambridge, MA. John Wiley, New York, pp 856–868Google Scholar
  143. Prandtl L, Reichardt H (1934) Einfluss von Wärmeschichtung auf Eigen-schaften einer turbulenten Strömung. Deutsche Forschung 15:110–121Google Scholar
  144. Prandtl L, Wieghardt K (1945) Über ein neues Formelsystem für die aus- gebildete Turbulenz. Nachr Akad Wiss Gött Math-Phys Kl 6(19):874–887zbMATHGoogle Scholar
  145. Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos Trans R Soc Lond 174:935–982ADSzbMATHGoogle Scholar
  146. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans R Soc Lond A 186:123–164ADSCrossRefGoogle Scholar
  147. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, LondonzbMATHGoogle Scholar
  148. Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbour graph. Proc R Soc Lond A: Math Phys Eng Sci 110(756):709–737. Scholar
  149. Robert R, Vargas V (2008) Hydrodynamic turbulence and intermittent random fields. Commun Math Phys 284(3):649–673. Scholar
  150. Sanada T, Shanmugasundaram V (1992) Random sweeping effect in isotropic numerical turbulence. Phys Fluids A: Fluid Dyn 4(6):1245–1250.
  151. She Z-S, Lévèque E (1994) Universal scaling laws in fully developed turbulence. Phys Rev Lett 72(3):336–339. Scholar
  152. She Z-S, Waymire EC (1995) Quantized energy cascade and log-Poisson statistics in fully developed turbulence. Phys Rev Lett 74(2):262–265. Scholar
  153. Simmons LFG, Salter C (1934) Experimental investigation and analysis of the velocity variations in turbulent flow. Proc R Soc Lond A: Math Phys Eng Sci 145(854):212–234. Scholar
  154. Simmons LFG, Salter C, Taylor GI (1938) An experimental determination of the spectrum of turbulence. Proc R Soc Lond A: Math Phys Eng Sci 165(920):73–89. Scholar
  155. Stokes GG (1845) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans Camb Philos Soc 8:287Google Scholar
  156. Stokes GG (1850) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Philos Soc 9:8ADSGoogle Scholar
  157. Tarpin M, Canet L, Wschebor N (2018) Breaking of scale invariance in the time dependence of correlation functions in isotropic and homogeneous turbu- lence. Phys Fluids 30(5):055102. Scholar
  158. Tarpin M et al (2017) Nonperturbative renormalization group for the diffusive epidemic process. Phys Rev E 96(2):022137.
  159. Taylor GI (1935a) Statistical Theory of Turbulence. Proc R Soc Lond A: Math Phys Eng Sci 151(873):421–444.
  160. Taylor GI (1935b) Statistical theory of turbulence. II. Proc R Soc Lond A: Math Phys Eng Sci 151(873):444–454.
  161. Taylor GI (1935c) Statistical theory of turbulence. III. Distribution of dissipation of energy in a pipe over its cross-section. Proc R Soc Lond A: Math Phys Eng Sci 151(873):455–464.
  162. Taylor GI (1935d) Statistical theory of turbulence. IV. Diffusion in a turbulent air stream. Proc R Soc Lond A: Math Phys Eng Sci 151(873):465–478.
  163. Taylor GI (1936) Correlation measurements in a turbulent flow through a pipe. Proc R Soc Lond A: Math Phys Eng Sci 157(892):537–546. Scholar
  164. Taylor GI (1937) The statistical theory of isotropic turbulence. J Aeronaut Sci 4(8):311–315. Scholar
  165. Taylor GI (1938a) Production and dissipation of vorticity in a turbulent fluid. Proc R Soc Lond A: Math Phys Eng Sci 164(916):15–23.
  166. Taylor GI (1938b) The spectrum of turbulence. Proc R Soc Lond A: Math Phys Eng Sci 164(919):476–490.
  167. Taylor GI (1960) Observations and speculations on the nature of turbulent motion. In: Batchelor GK (ed) The scientific papers of sir Geoffrey Ingram Taylor (meteorology, oceanography and turbulent flow). Cambdrige University Press, Cambdrige, pp 69–78Google Scholar
  168. Taylor GI, Green AE (1937) Mechanism of the production of small eddies from large ones. Proc R Soc Lond A: Math Phys Eng Sci 158(895):499–521. Scholar
  169. Tennekes H (1968) Simple model for the small-scale structure of turbulence. Phys Fluids 11(3):669–671. Scholar
  170. Tennekes H (1975) Eulerian and Lagrangian time microscales in isotropic turbulence. J Fluid Mech 67(03):561–567. Scholar
  171. Tomassini P (1997) An exact renormalization group analysis of 3D well developed turbulence. Phys Lett B 411(1):117–126. Scholar
  172. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc London Ser B Biol Sci 237(641):37–72. Scholar
  173. Weizsäcker CFV (1948) Das Spektrum der Turbulenz bei groÿen Reynoldsschen Zahlen. Z Phys 124(7):614–627. Scholar
  174. Wiese KJ (2016) Coherent-state path integral versus coarse-grained effective stochastic equation of motion: from reaction diffusion to stochastic sandpiles. Phys Rev E 93:042117(27).
  175. van Wijland F, Oerding K, Hilhorst HJ (1998) Wilson renormalization of a reaction-diffusion process. Physica A 251:179–201.
  176. Yakhot V, Orszag SA (1986) Renormalization-group analysis of turbulence. Phys Rev Lett 57(14):1722–1724. Scholar
  177. Yakhot V, Orszag SA, She Z-S (1989) Space-time correlations in turbulence: kinematical versus dynamical effects. Phys Fluids A 1(2):184–186. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut für Theoretische Physik der Universität HeidelbergHeidelbergGermany

Personalised recommendations