Advertisement

Universal Behaviors in the Diffusive Epidemic Process and in Fully Developed Turbulence

  • Malo TarpinEmail author
Chapter
  • 21 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, the phenomenology and challenges of the two systems studied as part of the thesis work are presented. Firstly, in Sect. 2.1 we give a short account on the physics of the diffusive epidemic process and in particular of the phase transition between a fluctuating state and an absorbing state that this system undergoes. We take the time to present the existing literature on the subject and to uncover some remaining issues in the established description of this system. Secondly, in Sect. 2.2 after giving the general phenomenology and challenges of fully developed turbulence in fluids, we focus on the two subjects studied here: the time-dependence of correlation functions in both two- and three-dimensional turbulence, and the existence of intermittency in two-dimensional turbulence.

References

  1. Adzhemyan LD, Vasil’ev AN, Pis’mak YM (1983) Renormalization group approach in the theory of turbulence: the dimensions of composite operators. Theor Math Phys 57(2):1131–1141.  https://doi.org/10.1007/BF01018658CrossRefzbMATHGoogle Scholar
  2. Adzhemyan L, Vasil’ev AN, Gnatich M (1988) Renormalisation group approach in the theory of turbulence: renormalisation and critical dimensions of the composite operators of the energy-momentum tensor. Theor Math Phys 74:115.  https://doi.org/10.1007/BF01886480CrossRefzbMATHGoogle Scholar
  3. Adzhemyan LT, Antonov NV, Vasil’ev AN (1989) Infrared divergences and the renormalization group in the theory of fully developed turbulence. Zh Eksp Teor Fiz 95:1272ADSGoogle Scholar
  4. Adzhemyan LT, Antonov NV, Vasil’ev AN (1998) Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar. Phys Rev E 58(2):1823–1835.  https://doi.org/10.1103/PhysRevE.58.1823ADSMathSciNetCrossRefGoogle Scholar
  5. Anselmet F et al (1984) High-order velocity structure functions in turbulent shear flows. J Fluid Mech 140:63–89.  https://doi.org/10.1017/S0022112084000513ADSCrossRefGoogle Scholar
  6. Antonov NV (1991) Infrared asymptote of velocity correlator in turbulence theory. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR 189:15–23Google Scholar
  7. Antonov NV (1994) Possible deviations from the Kolmogorov spectrum of developed turbulence. Zh Eksp Teor Fiz 105:614Google Scholar
  8. Antonov NV (2006) Renormalization group, operator product expansion and anomalous scal- ing in models of turbulent advection. J Phys A: Math Gen 39(25):7825ADSCrossRefGoogle Scholar
  9. Antonov NV, Borisenok SV, Girina VI (1996) Renormalization group in the theory of fully developed turbulence. Composite operators of canonical dimension. Theor Math Phys 106:75Google Scholar
  10. Antonov NV et al (2018) Statistical symmetry restoration in fully developed turbulence: renormalization group analysis of two models. Phys Rev E 97(3):033101.  https://doi.org/10.1103/PhysRevE.97.033101ADSMathSciNetCrossRefGoogle Scholar
  11. Ashurst WT et al (1987) Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys Fluids 30(8):2343–2353.  https://doi.org/10.1063/1.866513ADSCrossRefGoogle Scholar
  12. Babelon O, Bernard D, Talon M (2003) Introduction to classical integrable systems. Cambridge University Press, Cambridge, Cambridge monographs on mathematical physics.  https://doi.org/10.1017/CBO9780511535024CrossRefzbMATHGoogle Scholar
  13. Babiano A, Dubrulle B, Frick P (1995) Scaling properties of numerical two-dimensional turbulence. Phys Rev E 52(4):3719–3729.  https://doi.org/10.1103/PhysRevE.52.3719ADSCrossRefzbMATHGoogle Scholar
  14. Bacry E, Muzy J (2003) Log-infinitely divisible multifractal processes. Commun Math Phys 236(3):449–475.  https://doi.org/10.1007/s00220-003-0827-3ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Batchelor GK (1969) Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys Fluids 12(12):II–233–II–239.  https://doi.org/10.1063/1.1692443
  16. Batchelor GK, Townsend AA (1949) The nature of turbulent motion at large wave-numbers. 199(1057):238–255.  https://doi.org/10.1098/rspa.1949.0136
  17. Belinicher VI, L’vov VS, (1987) A scale-invariant theory of fully developed hydrodynamic turbulence. Zh Eksp Teor Fiz 93:533Google Scholar
  18. Benzi R et al (1984) On the multifractal nature of fully developed turbulence and chaotic systems. J Phys A: Math Gen 17(18):3521.  https://doi.org/10.1088/0305-4470/17/18/021ADSMathSciNetCrossRefGoogle Scholar
  19. Benzi R et al (1991) Multifractality in the statistics of the velocity gradients in turbulence. Phys Rev Lett 67(17):2299–2302.  https://doi.org/10.1103/PhysRevLett.67.2299ADSCrossRefGoogle Scholar
  20. Benzi R et al (1993) A random process for the construction of multiaffine fields. Phys D: Nonlinear Phenom 65(4):352–358.  https://doi.org/10.1016/0167-2789(93)90060-EADSCrossRefzbMATHGoogle Scholar
  21. Bernard D (1999) Three-point velocity correlation functions in two-dimensional forced turbulence. Phys Rev E 60(5):6184–6187.  https://doi.org/10.1103/PhysRevE.60.6184ADSCrossRefGoogle Scholar
  22. Bernard D (2000) Influence of friction on the direct cascade of the 2D forced turbulence. Europhys Lett 50(3):333–339.  https://doi.org/10.1209/epl/i2000-00275-yADSCrossRefGoogle Scholar
  23. Bertini L et al (2015) Macroscopic fluctuation theory. Rev Mod Phys 87(2):593–636.  https://doi.org/10.1103/RevModPhys.87.593CrossRefGoogle Scholar
  24. Bertrand D et al (2007) Critical behavior of a two-species reaction-diffusion problem in 2D. Phys A: Stat Mech Its Appl 386(2):748–751.  https://doi.org/10.1016/j.physa.2007.08.038CrossRefGoogle Scholar
  25. Boffetta G et al (2002) Intermittency in two-dimensional Ekman-Navier-Stokes turbulence. Phys Rev E 66(2):026304.  https://doi.org/10.1103/PhysRevE.66.026304ADSMathSciNetCrossRefGoogle Scholar
  26. Bowman J C, Krommes JA, Ottaviani M (1993) The realizable Markovian closure. I. General theory, with application to three-wave dynamics. Phys Fluids B: Plasma Phys 5(10):3558–3589.  https://doi.org/10.1063/1.860829
  27. Bruneau CH, Kellay H (2005) Experiments and direct numerical simulations of two-dimensional turbulence. Phys Rev E 71(4):046305.  https://doi.org/10.1103/PhysRevE.71.046305ADSCrossRefGoogle Scholar
  28. Canet L, Delamotte B, Wschebor N (2015) Fully developed isotropic tur- bulence: symmetries and exact identities. Phys Rev E 91(5):053004.  https://doi.org/10.1103/PhysRevE.91.053004ADSMathSciNetCrossRefGoogle Scholar
  29. Canet L, Delamotte B, Wschebor N (2016) Fully developed isotropic turbulence: nonperturbative renormalization group formalism and fixed-point solution. Phys Rev E 93(6):063101.  https://doi.org/10.1103/PhysRevE.93.063101ADSCrossRefGoogle Scholar
  30. Canet L et al (2005) Nonperturbative fixed point in a nonequilibrium phase transition. Phys Rev Lett 95(10):100601.  https://doi.org/10.1103/PhysRevLett.95.100601ADSCrossRefGoogle Scholar
  31. Canet L et al (2011) Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: general framework and first applications. Phys Rev E 84(6):061128.  https://doi.org/10.1103/PhysRevE.84.061128ADSCrossRefGoogle Scholar
  32. Canet L et al (2017) Spatiotemporal velocity-velocity correlation function in fully developed turbulence. Phys Rev E 95(2):023107.  https://doi.org/10.1103/PhysRevE.95.023107ADSMathSciNetCrossRefGoogle Scholar
  33. Cardy JL, Täuber UC (1998) Field theory of branching and annihilating random walks. J Stat Phys 90(1):1–56.  https://doi.org/10.1023/A:1023233431588ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. Castaing B, Gagne Y, Hopfinger E (1990) Velocity probability density functions of high Reynolds number turbulence. Phys D: Nonlinear Phenom 46(2):177–200.  https://doi.org/10.1016/0167-2789(90)90035-NADSCrossRefzbMATHGoogle Scholar
  35. Chandrasekhar S (1955) A theory of turbulence. 229(1176):1–19.  https://doi.org/10.1098/rspa.1955.0070CrossRefGoogle Scholar
  36. Chen S, Kraichnan RH (1989) Sweeping decorrelation in isotropic turbulence. Phys Fluids A 1(12):2019–2024.  https://doi.org/10.1063/1.857475ADSMathSciNetCrossRefGoogle Scholar
  37. Chevillard L (2015) A random painting of fluid turbulence. Habilitation à diriger des recherches, ENS LyonGoogle Scholar
  38. Chevillard L et al (2006) Unified multifractal description of velocity increments statistics in turbulence: intermittency and skewness. Phys D: Nonlinear Phenom 218(1):77–82.  https://doi.org/10.1016/j.physd.2006.04.011ADSCrossRefzbMATHGoogle Scholar
  39. Chevillard L, Robert R, Vargas V (2010) A stochastic representation of the local structure of turbulence. EPL (Eurphys Lett) 89(5):54002.  https://doi.org/10.1209/0295-5075/89/54002ADSCrossRefGoogle Scholar
  40. Chevillard L et al (2012) A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows. Comptes Rendus Phys 13(9). Structures and statistics of fluid turbulence/Structures et statistiques de la turbulence des fluides, pp 899–928.  https://doi.org/10.1016/j.crhy.2012.09.002
  41. Corrsin S (1962) Turbulent dissipation fluctuations. Phys Fluids 5(10):1301–1302.  https://doi.org/10.1063/1.1706518ADSCrossRefzbMATHGoogle Scholar
  42. Collins JC (1984) Renormalization: an introduction to renormalization, the renormalization group and the operator-product expansion. Cambridge University Press, Cambridge, Cambridge monographs on mathematical physics.  https://doi.org/10.1017/CBO9780511622656
  43. Davidson P et al (eds) (2011) A voyage through turbulence. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139018241
  44. De Dominicis C, Martin PC (1979) Energy spectra of certain randomly-stirredfluids. Phys Rev A 19(1):419–422.  https://doi.org/10.1103/PhysRevA.19.419ADSCrossRefGoogle Scholar
  45. Debue P et al (2018) Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow. Phys Rev Fluids 3(2):024602.  https://doi.org/10.1103/PhysRevFluids.3.024602ADSCrossRefGoogle Scholar
  46. Desnianskii V, Novikov E (1974) Simulation of cascade processes in turbulent flows. J Appl Math Mech 38(3):468–475.  https://doi.org/10.1016/0021-8928(74)90041-0CrossRefzbMATHGoogle Scholar
  47. Dickman R (1994) Numerical study of a field theory for directed percolation. Phys Rev E 50(6):4404–4409.  https://doi.org/10.1103/PhysRevE.50.4404ADSCrossRefGoogle Scholar
  48. Dickman R, Maia DS (2008) The nature of the absorbing-state phase transition in the diffusive epidemic process. J Phys A: Math Theor 41(40):405002\(+\).  https://doi.org/10.1088/1751-8113/41/40/405002
  49. Dombre T (2010) Bose-like condensation of Lagrangian particles and higher-order statistics in passive scalar turbulent advection. EPL (Eurphys Lett) 91(5):54002.  https://doi.org/10.1209/0295-5075/91/54002ADSCrossRefGoogle Scholar
  50. Dryden HL et al (1937) Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres. NACA Rep 581:109–140Google Scholar
  51. Dubrulle B (1994) Intermittency in fully developed turbulence: log-Poisson statistics and generalized scale covariance. Phys Rev Lett 73(7):959–962.  https://doi.org/10.1103/PhysRevLett.73.959ADSCrossRefGoogle Scholar
  52. Elgart V, Kamenev A (2006) Classification of phase transitions in reaction-diffusion models. Phys Rev E 74(4):041101.  https://doi.org/10.1103/PhysRevE.74.041101ADSMathSciNetCrossRefGoogle Scholar
  53. Euler L (1757) Principes généraux du mouvement des fluides. Mém l’Académie R Sci Belles Lett Berl 11:274–315Google Scholar
  54. Eyink GL (1996) Exact results on stationary turbulence in 2D: consequences of vorticity conservation. Phys D: Nonlinear Phenom 91(1):97–142.  https://doi.org/10.1016/0167-2789(95)00250-2ADSCrossRefzbMATHGoogle Scholar
  55. Eyink GL, Sreenivasan KR (2006) Onsager and the theory of hydro-dynamic turbulence. Rev Mod Phys 78(1):87–135.  https://doi.org/10.1103/RevModPhys.78.87ADSCrossRefzbMATHGoogle Scholar
  56. Falkovich G, Fouxon I, Oz Y (2010) New relations for correlation functions in Navier-Stokes turbulence. J Fluid Mech 644:465–472.  https://doi.org/10.1017/S0022112009993429ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. Falkovich G et al (1996) Instantons and intermittency. Phys Rev E 54(5):4896–4907.  https://doi.org/10.1103/PhysRevE.54.4896ADSMathSciNetCrossRefGoogle Scholar
  58. Falkovich G, Gawȩdzki K, Vergassola M (2001) Particles and fields in fluid turbulence. Rev Mod Phys 73(4):913–975.  https://doi.org/10.1103/RevModPhys.73.913ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. Falkovich G, Lebedev V (1994a) Nonlocal vorticity cascade in two dimensions. Phys Rev E 49(3):R1800–R1803.  https://doi.org/10.1103/PhysRevE.49.R1800
  60. Falkovich G, Lebedev V (1994b) Universal direct cascade in two-dimensional turbulence. Phys Rev E 50(5):3883–3899.  https://doi.org/10.1103/PhysRevE.50.3883
  61. Favier B, Godeferd FS, Cambon C (2010) On space and time correlations of isotropic and rotating turbulence. Phys Fluids 22(1):015101.  https://doi.org/10.1063/1.3276290ADSCrossRefzbMATHGoogle Scholar
  62. Forster D, Nelson DR, Stephen MJ (1977) Large-distance and long-time properties of a randomly stirred fluid. Phys Rev A 16(2):732–749.  https://doi.org/10.1103/PhysRevA.16.732ADSMathSciNetCrossRefGoogle Scholar
  63. Fournier JD, Frisch U (1983) Remarks on the renormalization group in statistical fluid dynamics. Phys Rev A 28(2):1000–1002.  https://doi.org/10.1103/PhysRevA.28.1000ADSCrossRefGoogle Scholar
  64. de Freitas JE et al (2000) Critical behavior of a two-species reaction-diffusion problem. Phys Rev E 61(6):6330–6336.  https://doi.org/10.1103/PhysRevE.61.6330ADSCrossRefGoogle Scholar
  65. de Freitas J et al (2001) Reply to “Comment on ‘Critical behavior of a two-species reaction-diffusion problem”’. Phys Rev E 64(5).  https://doi.org/10.1103/physreve.64.058102
  66. Frisch U (1995) Turbulence: the legacy of AN Kolmogorov. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139170666ADSCrossRefzbMATHGoogle Scholar
  67. Frisch U, Morf R (1981) Intermittency in nonlinear dynamics and singularities at complex times. Phys Rev A 23(5):2673–2705.  https://doi.org/10.1103/PhysRevA.23.2673ADSCrossRefGoogle Scholar
  68. Frisch U, Vergassola M (1991) A prediction of the multifractal model: the intermediate dissipation range. Europhys Lett (EPL) 14(5):439–444.  https://doi.org/10.1209/0295-5075/14/5/009ADSCrossRefGoogle Scholar
  69. Frisch U, Sulem P-L, Nelkin M (1978) A simple dynamical model of inter- mittent fully developed turbulence. J Fluid Mech 87(4):719–736.  https://doi.org/10.1017/S0022112078001846ADSCrossRefzbMATHGoogle Scholar
  70. Fulco U, Messias D, Lyra M (2001a) Critical behavior of a one-dimensional diffusive epidemic process. Phys Rev E 63(6).  https://doi.org/10.1103/physreve.63.066118
  71. Fulco UL, Messias DN, Lyra ML (2001b) Monte Carlo study of the critical behavior of a diffusive epidemic process. Phys A: Stat Mech Its Appl 295(1–2):49–52.  https://doi.org/10.1016/s0378-4371(01)00050-4
  72. Gardiner CW et al (1976) Correlations in stochastic theories of chemical re-actions. J Stat Phys 14(4):307–331.  https://doi.org/10.1007/BF01030197ADSCrossRefGoogle Scholar
  73. Gawȩdzki K, Kupiainen A (1995) Anomalous scaling of the passive scalar. Phys Rev Lett 75(21):3834–3837.  https://doi.org/10.1103/PhysRevLett.75.3834ADSCrossRefGoogle Scholar
  74. Giles MJ (2001) Anomalous scaling in homogeneous isotropic turbulence. J Phys A: Math Gen 34(21):4389–4435.  https://doi.org/10.1088/0305-4470/34/21/302ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. Grassberger P (1982) On phase transitions in Schlögl’s second model. Z Phys B 47(4):365–374.  https://doi.org/10.1007/BF01313803
  76. Gutowitz HA, Victor JD, Knight BW (1987) Local structure theory for cellular automata. Phys D 28(1–2):18–48.  https://doi.org/10.1016/0167-2789(87)90120-5
  77. Halsey TC et al (1986) Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 33(2):1141–1151.  https://doi.org/10.1103/PhysRevA.33.1141ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. He G-W, Wang M, Lele SK (2004) On the computation of space-time correlations by large-eddy simulation. Phys Fluids 16(11):3859–3867.  https://doi.org/10.1063/1.1779251ADSCrossRefzbMATHGoogle Scholar
  79. Heisenberg W (1948) On the statistical theory of turbulence. Z Phys 124:628ADSCrossRefGoogle Scholar
  80. Hinrichsen H (2000) Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv Phys 49(7):815–958.  https://doi.org/10.1080/00018730050198152ADSCrossRefGoogle Scholar
  81. Janssen HK (1981) On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state. Z Phys B Condens Matter 42(2):151–154.  https://doi.org/10.1007/bf01319549ADSCrossRefGoogle Scholar
  82. Janssen HK (2001) Comment on “Critical behavior of a two-species reaction-diffusion problem”. Phys Rev E Stat Nonlinear Soft Matter Phys 64(5) Pt 2.  https://doi.org/10.1103/PhysRevE.64.058101.
  83. Janssen H-K, Stenull O (2016) Directed percolation with a conserved field and the depinning transition. Phys Rev E 94(4):042138.  https://doi.org/10.1103/PhysRevE.94.042138ADSCrossRefGoogle Scholar
  84. Jensen I (1999) Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice. J Phys A: Math Gen 32(28):5233–5249.  https://doi.org/10.1088/0305-4470/32/28/304
  85. Kahalerras H et al (1998) Intermittency and Reynolds number. Phys Fluids 10(4):910–921.  https://doi.org/10.1063/1.869613ADSCrossRefGoogle Scholar
  86. Kampen NV (2007) Stochastic processes in physics and chemistry, 3rd edn. North Holland.  https://doi.org/10.1016/B978-0-444-52965-7.X5000-4
  87. von Kármán T (1937) The fundamentals of the statistical theory of turbulence. J Aeronaut Sci 4(4):131–138.  https://doi.org/10.2514/8.350CrossRefzbMATHGoogle Scholar
  88. von Kármán T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164(917):192–215.  https://doi.org/10.1098/rspa.1938.0013ADSCrossRefzbMATHGoogle Scholar
  89. Kolmogorov A et al (1991) A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In: Tikhomirov VM (ed) Selected works of AN Kolmogorov: Volume I: Mathematics and mechanics. Springer Netherlands, Dordrecht, pp 242–270.  https://doi.org/10.1007/978-94-011-3030-1_38
  90. Kolmogorov AN (1941a) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:16Google Scholar
  91. Kolmogorov AN (1941b) The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl Akad Nauk SSSR 30:299Google Scholar
  92. Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13(1):82–85.  https://doi.org/10.1017/S0022112062000518ADSMathSciNetCrossRefzbMATHGoogle Scholar
  93. Kraichnan RH (1959) The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech 5(4):497–543.  https://doi.org/10.1017/S0022112059000362ADSMathSciNetCrossRefzbMATHGoogle Scholar
  94. Kraichnan RH (1964) Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys Fluids 7(11):1723.  https://doi.org/10.1063/1.2746572ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. Kraichnan RH (1965) Lagrangian-history closure approximation for turbulence. Phys Fluids 8(4):575–598.  https://doi.org/10.1063/1.1761271ADSMathSciNetCrossRefGoogle Scholar
  96. Kraichnan RH (1967a) Inertial ranges in two-dimensional turbulence. Phys Fluids 10(7):1417–1423.  https://doi.org/10.1063/1.1762301
  97. Kraichnan RH (1967b) Intermittency in the very small scales of turbulence. Phys Fluids 10(9):2080–2082.  https://doi.org/10.1063/1.1762412
  98. Kraichnan RH (1968) Small-scale structure of a scalar field convected by turbulence. Phys Fluids 11(5):945–953.  https://doi.org/10.1063/1.1692063ADSCrossRefzbMATHGoogle Scholar
  99. Kraichnan RH (1971) Inertial-range transfer in two and three-dimensional turbulence. J Fluid Mech 47(3):525–535.  https://doi.org/10.1017/S0022112071001216ADSCrossRefzbMATHGoogle Scholar
  100. Kraichnan RH (1974) On Kolmogorov’s inertial-range theories. J Fluid Mech 62(2):305–330.  https://doi.org/10.1017/S002211207400070X.48ADSMathSciNetCrossRefzbMATHGoogle Scholar
  101. Kraichnan RH (1982) Hydrodynamic turbulence and the renormalization group. Phys Rev A 25(6):3281–3289.  https://doi.org/10.1103/PhysRevA.25.3281ADSCrossRefGoogle Scholar
  102. Kraichnan RH (1994) Anomalous scaling of a randomly advected passive scalar. Phys Rev Lett 72(7):1016–1019.  https://doi.org/10.1103/PhysRevLett.72.1016ADSCrossRefGoogle Scholar
  103. Kree R, Schaub B, Schmittmann B (1989) Effects of pollution on critical population dynamics. Phys Rev A 39(4):2214–2221.  https://doi.org/10.1103/PhysRevA.39.2214ADSCrossRefGoogle Scholar
  104. Krommes JA (2002) Fundamental statistical descriptions of plasma turbulence in magnetic fields. Phys Rep 360(1):1–352.  https://doi.org/10.1016/S0370-1573(01)00066-7ADSCrossRefGoogle Scholar
  105. Kuo AY-S, Corrsin S (1971) Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid. J Fluid Mech 50(2):285–319.  https://doi.org/10.1017/S0022112071002581ADSCrossRefGoogle Scholar
  106. Kurtz TG (1978) Strong approximation theorems for density dependent Markov chains. Stoch Process Their Appl 6(3):223–240.  https://doi.org/10.1016/0304-4149(78)90020-0MathSciNetCrossRefzbMATHGoogle Scholar
  107. Le Doussal P, Wiese KJ (2015) Exact mapping of the stochastic field theory for Manna sandpiles to interfaces in random media. Phys Rev Lett 114(11):110601.  https://doi.org/10.1103/PhysRevLett.114.110601CrossRefGoogle Scholar
  108. Lee TD (1951) Difference between turbulence in a two-dimensional fluid and in a three-dimensional fluid. J Appl Phys 22(4):524.  https://doi.org/10.1063/1.1699997ADSMathSciNetCrossRefzbMATHGoogle Scholar
  109. Leith CE (1968) Diffusion approximation for two-dimensional turbulence. Phys Fluids 11(3):671–672.  https://doi.org/10.1063/1.1691968
  110. Lesieur M (2008) Turbulence in fluids, 4th edn. Springer, Berlin.  https://doi.org/10.1007/978-1-4020-6435-7
  111. L’vov VS, Lebedev VV, (1993) Exact relations in the theory of developed hydrodynamic turbulence. Phys Rev E 47(3):1794–1802.  https://doi.org/10.1103/PhysRevE.47.1794
  112. L’vov V, Procaccia I (1995) Exact resummations in the theory of hydrodynamic turbulence. I. The ball of locality and normal scaling. Phys Rev E 52(4):3840–3857.  https://doi.org/10.1103/PhysRevE.52.3840
  113. Maia DS, Dickman R (2007) Diffusive epidemic process: theory and simulation. J Phys: Condens Matter 19:065143.  https://doi.org/10.1088/0953-8984/19/6/065143ADSCrossRefGoogle Scholar
  114. Mandelbrot BB (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62(2):331–358.  https://doi.org/10.1017/S0022112074000711ADSCrossRefzbMATHGoogle Scholar
  115. Mandelbrot BB (1991) Random multifractals: negative dimensions and the resulting limitations of the thermodynamic formalism. Proc: Math Phys Sci 434(1890):79–88.  https://doi.org/10.1098/rspa.1991.0081
  116. Marro J, Dickman R (1999) Nonequilibrium phase transitions in lattice models. Collection alea-saclay monographs and texts in statistical physics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9780511524288
  117. Mazzino A, Muratore-Ginanneschi P (2009) Musacchio S (2009) Scaling regimes of 2D turbulence with power-law stirring: theories versus numerical experiments. J Stat Mech: Theory Exp 10:P10012.  https://doi.org/10.1088/1742-5468/2009/10/p10012CrossRefGoogle Scholar
  118. Mejía-Monasterio C, Muratore-Ginanneschi P (2012) Nonperturbative renormalization group study of the stochastic Navier-Stokes equation. Phys Rev E 86(1):016315.  https://doi.org/10.1103/PhysRevE.86.016315
  119. Meneveau C (1996) Transition between viscous and inertial-range scaling of turbulence structure functions. Phys Rev E 54(4):3657–3663.  https://doi.org/10.1103/PhysRevE.54.3657ADSMathSciNetCrossRefGoogle Scholar
  120. Meneveau C, Sreenivasan KR (1991) The multifractal nature of turbulent energy dissipation. J Fluid Mech 224:429–484.  https://doi.org/10.1017/S0022112091001830ADSCrossRefzbMATHGoogle Scholar
  121. Millionschikov M (1941) On the theory of homogeneous isotropic turbulence. Dokl Akad Nauk SSSR 32:615–618MathSciNetGoogle Scholar
  122. Monin AS, Yaglom AM (1973) Statistical Fluid Mechanics: mechanics of turbulence. Volume 2, 2nd edn. MIT Press, CambridgeGoogle Scholar
  123. Muzy JF, Bacry E, Arneodo A (1993) Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method. Phys Rev E 47(2):875–884.  https://doi.org/10.1103/PhysRevE.47.875ADSCrossRefGoogle Scholar
  124. Nam K et al (2000) Lagrangian chaos and the effect of drag on the enstrophy cascade in two-dimensional turbulence. Phys Rev Lett 84(22):5134–5137.  https://doi.org/10.1103/PhysRevLett.84.5134ADSCrossRefGoogle Scholar
  125. Navier CLMH (1823) Mémoire sur les lois du mouvement des fluides. Mém l’Académie R Sci 6:389–416Google Scholar
  126. Nelkin M (1990) Multifractal scaling of velocity derivatives in turbulence. Phys Rev A 42(12):7226–7229.  https://doi.org/10.1103/PhysRevA.42.7226ADSCrossRefGoogle Scholar
  127. Nelkin M, Tabor M (1990) Time correlations and random sweeping in isotropic turbulence. Phys Fluids A: Fluid Dyn 2(1):81–83.  https://doi.org/10.1063/1.857684ADSMathSciNetCrossRefzbMATHGoogle Scholar
  128. Novikov EA, Stewart RW (1964) The intermittency of turbulence and the spectrum of energy dissipation fluctuations. Izv Acad Sci USSR Beophys Ser 408(3):Google Scholar
  129. Obukhov AM (1941) On the spectral energy distribution in a turbulent flow. Izv Akad Nauk SSSR, Geogr Geofiz, p 5Google Scholar
  130. Obukhov AM (1962) Some specific features of atmospheric turbulence. J Geophys Res 67(8):3011–3014.  https://doi.org/10.1029/JZ067i008p03011ADSCrossRefzbMATHGoogle Scholar
  131. Ódor G (2004) Universality classes in nonequilibrium lattice systems. Rev Mod Phys 76(3):663–724.  https://doi.org/10.1103/RevModPhys.76.663ADSMathSciNetCrossRefzbMATHGoogle Scholar
  132. Oerding K et al (2000) Fluctuation induced first-order transition in a nonequilibrium steady state. J Stat Phys 99:1365.  https://doi.org/10.1023/A:1018697024371MathSciNetCrossRefzbMATHGoogle Scholar
  133. Ohkitani K, Yamada M (1989) Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully-developed model turbulence. Prog Theor Phys 81:329–341.  https://doi.org/10.1143/PTP.81.329ADSMathSciNetCrossRefGoogle Scholar
  134. Onsager L (1949) Statistical hydrodynamics. Il Nuovo Cim (1943–1954) 6(2):279–287.  https://doi.org/10.1007/BF02780991
  135. Orszag SA, Patterson GS (1972) Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys Rev Lett 28(2):76–79.  https://doi.org/10.1103/PhysRevLett.28.76ADSCrossRefGoogle Scholar
  136. Pagani C (2015) Functional renormalization group approach to the Kraichnan model. Phys Rev E 92(3):033016.  https://doi.org/10.1103/PhysRevE.92.033016ADSMathSciNetCrossRefGoogle Scholar
  137. Paladin G, Vulpiani A (1987) Degrees of freedom of turbulence. Phys Rev A 35(4):1971–1973.  https://doi.org/10.1103/PhysRevA.35.1971ADSCrossRefGoogle Scholar
  138. Paret J, Jullien M-C, Tabeling P (1999) Vorticity statistics in the two-dimensional enstrophy cascade. Phys Rev Lett 83(17):3418–3421.  https://doi.org/10.1103/PhysRevLett.83.3418ADSCrossRefGoogle Scholar
  139. Parisi G, Frisch U (1985) On the singularity structure of fully developed turbulence. Turbulence and predictability in geophysical fluid dynamics and climate dynamics. In: Ghil M, Benzi R, Parisi G (eds), pp 84–87. North-HollandGoogle Scholar
  140. Pereira RM, Moriconi L, Chevillard L (2018) A multifractal model for the velocity gradient dynamics in turbulent flows. J Fluid Mech 839:430–467.  https://doi.org/10.1017/jfm.2018.12ADSMathSciNetCrossRefzbMATHGoogle Scholar
  141. Poulain C et al (2006) Dynamics of spatial Fourier modes in turbulence. Eur Phys J B 53(2):219–224.  https://doi.org/10.1140/epjb/e2006-00354-yADSCrossRefGoogle Scholar
  142. Prandtl L (1938) Beitrag zum Turbulenzsymposium. In: Hartog JD, Peters H (eds) Proceedings of the 5th international congress on applied mechanics, Cambridge, MA. John Wiley, New York, pp 856–868Google Scholar
  143. Prandtl L, Reichardt H (1934) Einfluss von Wärmeschichtung auf Eigen-schaften einer turbulenten Strömung. Deutsche Forschung 15:110–121Google Scholar
  144. Prandtl L, Wieghardt K (1945) Über ein neues Formelsystem für die aus- gebildete Turbulenz. Nachr Akad Wiss Gött Math-Phys Kl 6(19):874–887zbMATHGoogle Scholar
  145. Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos Trans R Soc Lond 174:935–982ADSzbMATHGoogle Scholar
  146. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans R Soc Lond A 186:123–164ADSCrossRefGoogle Scholar
  147. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, LondonzbMATHGoogle Scholar
  148. Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbour graph. Proc R Soc Lond A: Math Phys Eng Sci 110(756):709–737.  https://doi.org/10.1098/rspa.1926.0043ADSCrossRefGoogle Scholar
  149. Robert R, Vargas V (2008) Hydrodynamic turbulence and intermittent random fields. Commun Math Phys 284(3):649–673.  https://doi.org/10.1007/s00220-008-0642-yADSMathSciNetCrossRefzbMATHGoogle Scholar
  150. Sanada T, Shanmugasundaram V (1992) Random sweeping effect in isotropic numerical turbulence. Phys Fluids A: Fluid Dyn 4(6):1245–1250.  https://doi.org/10.1063/1.858242
  151. She Z-S, Lévèque E (1994) Universal scaling laws in fully developed turbulence. Phys Rev Lett 72(3):336–339.  https://doi.org/10.1103/PhysRevLett.72.336ADSCrossRefGoogle Scholar
  152. She Z-S, Waymire EC (1995) Quantized energy cascade and log-Poisson statistics in fully developed turbulence. Phys Rev Lett 74(2):262–265.  https://doi.org/10.1103/PhysRevLett.74.262ADSCrossRefGoogle Scholar
  153. Simmons LFG, Salter C (1934) Experimental investigation and analysis of the velocity variations in turbulent flow. Proc R Soc Lond A: Math Phys Eng Sci 145(854):212–234.  https://doi.org/10.1098/rspa.1934.0091ADSCrossRefzbMATHGoogle Scholar
  154. Simmons LFG, Salter C, Taylor GI (1938) An experimental determination of the spectrum of turbulence. Proc R Soc Lond A: Math Phys Eng Sci 165(920):73–89.  https://doi.org/10.1098/rspa.1938.0046ADSCrossRefzbMATHGoogle Scholar
  155. Stokes GG (1845) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans Camb Philos Soc 8:287Google Scholar
  156. Stokes GG (1850) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Philos Soc 9:8ADSGoogle Scholar
  157. Tarpin M, Canet L, Wschebor N (2018) Breaking of scale invariance in the time dependence of correlation functions in isotropic and homogeneous turbu- lence. Phys Fluids 30(5):055102.  https://doi.org/10.1063/1.5020022ADSCrossRefGoogle Scholar
  158. Tarpin M et al (2017) Nonperturbative renormalization group for the diffusive epidemic process. Phys Rev E 96(2):022137.  https://doi.org/10.1103/PhysRevE.96.022137
  159. Taylor GI (1935a) Statistical Theory of Turbulence. Proc R Soc Lond A: Math Phys Eng Sci 151(873):421–444.  https://doi.org/10.1098/rspa.1935.0158
  160. Taylor GI (1935b) Statistical theory of turbulence. II. Proc R Soc Lond A: Math Phys Eng Sci 151(873):444–454.  https://doi.org/10.1098/rspa.1935.0159
  161. Taylor GI (1935c) Statistical theory of turbulence. III. Distribution of dissipation of energy in a pipe over its cross-section. Proc R Soc Lond A: Math Phys Eng Sci 151(873):455–464.  https://doi.org/10.1098/rspa.1935.0160
  162. Taylor GI (1935d) Statistical theory of turbulence. IV. Diffusion in a turbulent air stream. Proc R Soc Lond A: Math Phys Eng Sci 151(873):465–478.  https://doi.org/10.1098/rspa.1935.0161
  163. Taylor GI (1936) Correlation measurements in a turbulent flow through a pipe. Proc R Soc Lond A: Math Phys Eng Sci 157(892):537–546.  https://doi.org/10.1098/rspa.1936.0214ADSCrossRefGoogle Scholar
  164. Taylor GI (1937) The statistical theory of isotropic turbulence. J Aeronaut Sci 4(8):311–315.  https://doi.org/10.2514/8.419CrossRefzbMATHGoogle Scholar
  165. Taylor GI (1938a) Production and dissipation of vorticity in a turbulent fluid. Proc R Soc Lond A: Math Phys Eng Sci 164(916):15–23.  https://doi.org/10.1098/rspa.1938.0002
  166. Taylor GI (1938b) The spectrum of turbulence. Proc R Soc Lond A: Math Phys Eng Sci 164(919):476–490.  https://doi.org/10.1098/rspa.1938.0032
  167. Taylor GI (1960) Observations and speculations on the nature of turbulent motion. In: Batchelor GK (ed) The scientific papers of sir Geoffrey Ingram Taylor (meteorology, oceanography and turbulent flow). Cambdrige University Press, Cambdrige, pp 69–78Google Scholar
  168. Taylor GI, Green AE (1937) Mechanism of the production of small eddies from large ones. Proc R Soc Lond A: Math Phys Eng Sci 158(895):499–521.  https://doi.org/10.1098/rspa.1937.0036ADSCrossRefzbMATHGoogle Scholar
  169. Tennekes H (1968) Simple model for the small-scale structure of turbulence. Phys Fluids 11(3):669–671.  https://doi.org/10.1063/1.1691966ADSCrossRefGoogle Scholar
  170. Tennekes H (1975) Eulerian and Lagrangian time microscales in isotropic turbulence. J Fluid Mech 67(03):561–567.  https://doi.org/10.1017/S0022112075000468ADSCrossRefzbMATHGoogle Scholar
  171. Tomassini P (1997) An exact renormalization group analysis of 3D well developed turbulence. Phys Lett B 411(1):117–126.  https://doi.org/10.1016/S0370-2693(97)00980-5ADSCrossRefGoogle Scholar
  172. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc London Ser B Biol Sci 237(641):37–72.  https://doi.org/10.2307/92463ADSMathSciNetCrossRefzbMATHGoogle Scholar
  173. Weizsäcker CFV (1948) Das Spektrum der Turbulenz bei groÿen Reynoldsschen Zahlen. Z Phys 124(7):614–627.  https://doi.org/10.1007/BF01668898ADSCrossRefzbMATHGoogle Scholar
  174. Wiese KJ (2016) Coherent-state path integral versus coarse-grained effective stochastic equation of motion: from reaction diffusion to stochastic sandpiles. Phys Rev E 93:042117(27).  https://doi.org/10.1103/PhysRevE.93.042117
  175. van Wijland F, Oerding K, Hilhorst HJ (1998) Wilson renormalization of a reaction-diffusion process. Physica A 251:179–201.  https://doi.org/10.1016/S0378-4371(97)00603-1
  176. Yakhot V, Orszag SA (1986) Renormalization-group analysis of turbulence. Phys Rev Lett 57(14):1722–1724.  https://doi.org/10.1103/PhysRevLett.57.1722ADSCrossRefzbMATHGoogle Scholar
  177. Yakhot V, Orszag SA, She Z-S (1989) Space-time correlations in turbulence: kinematical versus dynamical effects. Phys Fluids A 1(2):184–186.  https://doi.org/10.1063/1.857486ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut für Theoretische Physik der Universität HeidelbergHeidelbergGermany

Personalised recommendations