Redefining Agricultural Insurance Services Using Earth Observation Data. The Case of Beacon Project

  • Emmanuel LekakisEmail author
  • Stylianos Kotsopoulos
  • Gregory Mygdakos
  • Agathoklis Dimitrakos
  • Ifigeneia-Maria Tsioutsia
  • Polimachi Simeonidou
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 554)


BEACON is a market-led project that couples cutting edge Earth Observation (EO) technology with weather intelligence and blockchain to deliver a toolbox for the Agricultural Insurance (AgI) sector with timely cost-efficient and actionable insights for the agri-insurance industry. BEACON enables insurance companies to exploit the untapped market potential of AgI, while contributing to the redefinition of existing AgI products and services. The Damage Assessment Calculator of BEACON employs remote sensing techniques in order to improve the quality and cost-effectiveness of agri-insurance by: (i) increasing the objectivity of the experts field inspections; (ii) reducing the cost of field visits and (iii) increasing farmers’ confidence in the estimation results, given the significant economic impact of erroneous estimation. This paper provides an analysis of different type of EO data and remote sensing techniques implemented in the operational workflow of BEACON that can be used by AgI companies to provide safe and reliable results on storms, floods, wildfires and droughts damage on crops.


Agricultural Insurance BEACON Earth observation data 



This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No 821964.


  1. 1.
    Rosenzweig, C., Iglesius, A., Yang, X.B., Epstein, P.R., Chivian, E.: Climate change and extreme weather events- implications for food production, plant diseases, and pests. NASA Publications, 24 (2001)Google Scholar
  2. 2.
    Rüegger, M.: Trends in agricultural insurance in the European Union. Milliman (2007)Google Scholar
  3. 3.
    de Leeuw, J., et al.: The potential and uptake of remote sensing in insurance: a review. Remote Sens. 6, 10888–10912 (2014)CrossRefGoogle Scholar
  4. 4.
    FAO: The impact of disasters and crises on agriculture and food security, 2017. Rome (2018)Google Scholar
  5. 5.
    Nuttall, J.G., Perry, E.M., Delahunty, A.J., O’Leary, G.J., Barlow, K.M., Wallace, A.J.: Frost response in wheat and early detection using proximal sensors. J. Agro. Crop Sci. 205, 220–234 (2019)CrossRefGoogle Scholar
  6. 6.
    Lu, D., Mausel, P., Brondízio, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. 25(12), 2365–2407 (2004)CrossRefGoogle Scholar
  7. 7.
    Szigarski, C., et al.: Analysis of the radar vegetation index and potential improvements. Remote Sens. 10, 1776 (2018)CrossRefGoogle Scholar
  8. 8.
    Saatchi, S.: SAR methods for mapping and monitoring forest biomass. In: SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. NASA (2019). e-bookGoogle Scholar
  9. 9.
    Chauhan, S., Srivastava, H.S.: Comparative evaluation of the sensitivity of multi-polarised SAR and optical data for various land cover classes. Int. J. Adv. Remote Sens. GIS Geogr. 4(1), 1–14 (2016)Google Scholar
  10. 10.
    Zoka, M., Psomiadis, E., Dercas, N.: The complementary use of optical and SAR data in monitoring flood events and their effects. In: Proceedings, vol. 2, p. 644 (2018)Google Scholar
  11. 11.
    Xu, H.Q.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006)CrossRefGoogle Scholar
  12. 12.
    Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., Li, X.: Water bodies’ mapping from sentinel-2 imagery with mNDWI at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 8, 354 (2016)CrossRefGoogle Scholar
  13. 13.
    Singh, K.V., Setia, R., Sahoo, S., Prasad, A., Pateriya, B.: Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 30, 650–661 (2015)CrossRefGoogle Scholar
  14. 14.
    Kwang, C., Osei, E.M. Jr., Amoah, A.S.: Comparing of landsat 8 and sentinel 2A using water extraction indexes over Volta River. J. Geogr. Geol. 10(1), 1–7 (2018)CrossRefGoogle Scholar
  15. 15.
    Cian, F., Marconcini, M., Ceccato, P.: Normalized difference flood index for rapid flood mapping: taking advantage of EO big data. Remote Sens. Environ. 209, 712–730 (2018)CrossRefGoogle Scholar
  16. 16.
    Cian, F., Marconcini, M., Ceccato, P., Giupponi, C.: Flood depth estimation by means of high-resolution SAR images and lidar data. Nat. Hazards Earth Syst. Sci. 18, 3063–3084 (2018)CrossRefGoogle Scholar
  17. 17.
    Twele, A., Cao, W., Plank, S., Martinis, S.: Sentinel-1-based flood mapping: a fully automated processing chain. Int. J. Remote Sens. 37, 2990–3004 (2016)CrossRefGoogle Scholar
  18. 18.
    Roldán-Zamarrón, A., Merino-de-Miguel, S., González-Alonso, F., García-Gigorro S., Cuevas, J.M.: Minas de Riotinto (south Spain) forest fire: burned area assessment and fire severity mapping using Landsat 5-TM, Envisat-MERIS, and Terra-MODIS postfire images. J. Geophys. Res. 111, 1–9 (2006)Google Scholar
  19. 19.
    Viana-Soto, A., Aguado, I., Martínez, S.: Assessment of post-fire vegetation recovery using fire severity and geographical data in the Mediterranean Region (Spain). Environments 4, 90 (2017)CrossRefGoogle Scholar
  20. 20.
    Key, C.H., Benson, N.C.: Measuring and remote sensing of burn severity: the CBI and NBR. Poster abstract. In Neuenschwander, L.F., Ryan, K.C. (eds.) Joint Fire Science Conference and Workshop, 284 p. University of Idaho and International Association of Wildland Fire (1999)Google Scholar
  21. 21.
    Parks, S.A., Dillon, G.K., Miller, C.: A new metric for quantifying burn severity: the relativized burn ratio. Remote Sens. 6, 1827–1844 (2014)CrossRefGoogle Scholar
  22. 22.
    Suresh Babu, K.V., Arijit Roy, Aggarwal, R.: Mapping of forest fire burned severity using the Sentinel datasets. ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-5, 763–769 (2018)CrossRefGoogle Scholar
  23. 23.
    Klisch, A., Atzberger, C.: Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sens. 8, 267 (2016)CrossRefGoogle Scholar
  24. 24.
    Vaani, N., Porchelvan, P.: Assessment of long term agricultural drought in Tamilnadu, India using NDVI anomaly. Dis. Adv. 10(10), 1–10 (2017)Google Scholar
  25. 25.
    Anyamba, A., Tucker, C.J.: Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote Sensing of Drought: Innovative Monitoring Approaches, 23 (2012)Google Scholar
  26. 26.
    Zhao, J.L., Zhang, D.Y., Luo, J.H., Huang, S.L., Dong, Y.Y., Huang, W.J.: Detection and mapping of hail damage to corn using domestic remotely sensed data in China. Aust. J. Crop Sci. 6(1), 101–108 (2012)Google Scholar
  27. 27.
    Herath, S.: Flood damage estimation of an urban catchment using remote sensing and GIS. International Training Program on total disaster management 10–13 June 2003Google Scholar
  28. 28.
    Dutta, D., Herath, S., Musiake, K.: A mathematical model for flood loss estimation. J. Hydrol. 277, 24–49 (2003)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  • Emmanuel Lekakis
    • 1
    Email author
  • Stylianos Kotsopoulos
    • 1
  • Gregory Mygdakos
    • 1
  • Agathoklis Dimitrakos
    • 1
  • Ifigeneia-Maria Tsioutsia
    • 1
  • Polimachi Simeonidou
    • 1
  1. 1.AgroappsThessalonikiGreece

Personalised recommendations