Interpolation of Data Measured by Field Harvesters: Deployment, Comparison and Verification

  • Tomáš Řezník
  • Lukáš HermanEmail author
  • Kateřina Trojanová
  • Tomáš Pavelka
  • Šimon Leitgeb
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 554)


Yield is one of the key indicators in agriculture. The most common practices provide only one yield value for a whole field according to the weight of the harvested crop. On the contrary, precision agriculture techniques discover spatial patterns within a field to minimise the environmental burden caused by agricultural activities. Field harvesters equipped with sensors provide more detailed and spatially localised values. The measurements from such sensors need to be filtered and interpolated for the purposes of follow-up analyses and interpretations. This study verified the differences between three methods of interpolation (Inverse Distance Weighted, Inverse Distance Squared and Ordinary Kriging) derived from field sensor measurements that were (1) obtained directly from the field harvester, (2) processed by global filters, and (3) processed by global and local filters. Statistical analyses evaluated the results of interpolations from three fully operational Czech fields. The revealed spatial patterns, as well as recommendations regarding the suitability of the interpolation methods used, are presented at the end of this paper.


Data filtering Field harvester Interpolation Inverse Distance Squared Inverse Distance Weighted Ordinary Kriging Yield mapping 



This paper is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 818346 titled “Sino-EU Soil Observatory for Intelligent Land Use Management” (SIEUSOIL). Kateřina Trojanová, Tomáš Pavelka and Šimon Leitgeb were also supported by funding from Masaryk University under grant agreement No. MUNI/A/1576/2018. The authors would like to thank all persons from the Rostěnice Farm who participated in the study.


  1. 1.
    Almasi, A., Jalalian, A., Toomanian, N.: Using OK and IDW methods for prediction the spatial variability of a horizon depth and OM in Soils of Shahrekord, Iran. J. Environ. Earth Sci. 4(15), 17–27 (2014)Google Scholar
  2. 2.
    Arslan, S., Colvin, T.S.: Grain yield mapping: yield sensing, yield reconstruction, and errors. Precision Agric. 3(2), 135–154 (2002)CrossRefGoogle Scholar
  3. 3.
    Auernhammer, H.: Precision farming – the environmental challenge. Comput. Electron. Agric. 30(1–3), 31–43 (2001)CrossRefGoogle Scholar
  4. 4.
    Blackmore, S., Moore, M.: Remedial correction of yield map data. Precision Agric. 1(1), 53–66 (1999)CrossRefGoogle Scholar
  5. 5.
    Charvat, K., et al.: Advanced visualisation of big data for agriculture as part of databio development. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 415–418 (2018)Google Scholar
  6. 6.
    Gozdowski, D., Samborski, S., Dobers, E.S.: Evaluation of methods for the detection of spatial outliers in the yield data of winter wheat. Colloquium Biometricum 2010(40), 41–51 (2010)Google Scholar
  7. 7.
    Hoskova-Mayerova, S, Talhofer, V., Hofmann, A., Kubicek, P.: Spatial database quality and the potential uncertainty sources. In: Studies in Computational Intelligence, pp. 127–142 (2013). Scholar
  8. 8.
    Huisman, O., By, R.A.: Principles of Geographic Information Systems: An Introductory Textbook, 4th edn. International Institute for Geo-Information Science and Earth Observation, Enschede (2009)Google Scholar
  9. 9.
    Krivoruchko, K.: Spatial Statistical Data Analysis for GIS Users, 1st edn. ESRI Press, Redlands (2011)Google Scholar
  10. 10.
    Kubicek, P., Kozel, J., Stampach, R., Lukas, V.: Prototyping the visualization of geographic and sensor data for agriculture. Comput. Electron. Agric. 97(9), 83–91 (2013)CrossRefGoogle Scholar
  11. 11.
    Lee, K.H., Chung, S.O., Choi, M.-C., Kim, Y.-J., Lee, J.-S., Kim, S.-K.: Post processing software for grain yield monitoring systems suitable to Korean full-feed combines. In: Proceedings of the 13th International Conference on Precision Agriculture, pp. 1–15 (2016)Google Scholar
  12. 12.
    Leroux, C., Jones, H., Clenet, A., Dreux, B., Becu, M., Tisseyre, B.: A general method to filter out defective spatial observations from yield mapping datasets. Precision Agric. 19(5), 789–808 (2018)CrossRefGoogle Scholar
  13. 13.
    Li, J., Heap, A.D.: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol. Inform. 6(3–4), 228–241 (2010)Google Scholar
  14. 14.
    Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W.: Geographic Information Science and Systems, 4th edn. Wiley, Hoboken (2015)Google Scholar
  15. 15.
    Lu, G.Y., Wong, D.W.: An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 34(9), 1044–1055 (2008)CrossRefGoogle Scholar
  16. 16.
    Palma, R., Reznik, T., Esbrí, M., Charvat, K., Mazurek, C.: An INSPIRE-based vocabulary for the publication of agricultural linked data. In: Tamma, V., Dragoni, M., Gonçalves, R., Ławrynowicz, A. (eds.) OWLED 2015. LNCS, vol. 9557, pp. 124–133. Springer, Cham (2016). Scholar
  17. 17.
    Řezník, T., et al.: Open farm management information system supporting ecological and economical tasks. In: Hřebíček, J., Denzer, R., Schimak, G., Pitner, T. (eds.) ISESS 2017. IAICT, vol. 507, pp. 221–233. Springer, Cham (2017). Scholar
  18. 18.
    Reznik, T., et al.: Monitoring of in-field variability for site specific crop management through open geospatial information. ISPRS Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B8, 1023–1028 (2016)CrossRefGoogle Scholar
  19. 19.
    Reznik, T., et al.: Disaster risk reduction in agriculture through geospatial (big) data processing. ISPRS Int. J. Geo-Inf. 6(8), 1–11 (2017)CrossRefGoogle Scholar
  20. 20.
    Reznik, T., Pavelka, T., Herman, L., Leitgeb, S., Lukas, V., Sirucek, P.: Deployment and verifications of the spatial filtering of data measured by field harvesters and methods of their interpolation: Czech cereal fields between 2014 and 2018. Sensors 19(22), 1–25 (2019)CrossRefGoogle Scholar
  21. 21.
    Robinson, T.P., Metternicht, G.: Comparing the performance of techniques to improve the quality of yield maps. Agric. Syst. 85(1), 19–41 (2005)CrossRefGoogle Scholar
  22. 22.
    Spekken, M., Anselmi, A.A., Molin, J.P.: A simple method for filtering spatial data. In: 9th European Conference on Precision Agriculture, pp. 259–266 (2013)Google Scholar
  23. 23.
    Souza, E.G., Bazzi, C.L., Khosla, R., Uribe-Opazo, M.A., Reich, R.M.: Interpolation type and data computation of crop yield maps is important for precision crop production. J. Plant Nutr. 39(4), 531–538 (2016)CrossRefGoogle Scholar
  24. 24.
    Stampach, R., Kubicek, P., Herman, L.: Dynamic visualization of sensor measurements: context based approach. Quaestiones Geographicae 34(3), 117–128 (2015)CrossRefGoogle Scholar
  25. 25.
    van Wart, J., Kersebaum, K.C., Peng, S., Milner, M., Cassman, K.G.: Estimating crop yield productivity zones at regional to national scales. Field Crops Res. 143(1), 34–43 (2013)CrossRefGoogle Scholar
  26. 26.
    Wackernagel, H.: Ordinary kriging. In: Multivariate Geostatistics, pp. 74–81 (1995)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  • Tomáš Řezník
    • 1
  • Lukáš Herman
    • 1
    Email author
  • Kateřina Trojanová
    • 1
  • Tomáš Pavelka
    • 1
  • Šimon Leitgeb
    • 1
  1. 1.Department of Geography, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations