Advertisement

Can We Use the Relationship Between Within-Field Elevation and NDVI as an Indicator of Drought-Stress?

  • Bernardo MaestriniEmail author
  • Matthijs Brouwer
  • Thomas Been
  • Lambertus A. P. Lotz
Conference paper
  • 102 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 554)

Abstract

Large farmers’ datasets can help shed light on agroecological processes if used in the context of hypothesis testing. Here we used an anonymized set of data from the geoplatform Akkerweb to better understand the correlation between within-field elevation and normalized differential vegetation index (NDVI, a proxy for biomass). The dataset included 3249 Dutch potato fields, for each of which the cultivar, the field polygon, the year of cultivation and the soil type (clay or sandy) was known. We hypothesize that under dry conditions such correlation is negative, meaning that the lowest portions of the field have more biomass because of water redistribution. From the data, we observed that in dry periods, such as the summer of 2018, the correlation was negative in sandy soils. Furthermore, we observed that early cultivars show a weaker correlation between NDVI and elevation than late cultivars, possibly because early cultivar escape part of the long dry summer spells. We conclude that the correlation between NDVI and elevation may be a useful indicator of drought stress, and deviations from the norm may be useful to evaluate the resistance to drought of individual cultivars.

Keywords

Precision agriculture Potato Netherlands Within-field variability NDVI Drought Elevation DEM AHN2 Actueel hoogtebestand nederland 

Notes

Acknowledgements

The project was funded by the internal funds of WUR- Agrosystems Research. We are grateful to the Akkerweb Foundation for providing the anonymized dataset and to the two referees for their insightful comments.

References

  1. 1.
    Liakos, K.G., Busato, P., Moshou, D., et al.: Machine learning in agriculture: a review. Sens. (Switzerland) 18, 1–29 (2018).  https://doi.org/10.3390/s18082674CrossRefGoogle Scholar
  2. 2.
    Evert, V., Been, T., Booij, A.J., et al.: Akkerweb: a platform for precision farming data, science, and practice. In: 14th International Conference on Precision Agriculture. International Society of Precision Agriculture, Monticello, IL (2018)Google Scholar
  3. 3.
    Kravchenko, A.N., Robertson, G.P., Thelen, K.D., Harwood, R.R.: Management, topographical, and weather effects on spatial variability of crop grain yields. Agron. J. 97, 514–523 (2005).  https://doi.org/10.1016/B978-012348525-0/50026-4CrossRefGoogle Scholar
  4. 4.
    Kravchenko, A.N., Bullock, D.G.: Correlation of corn and soybean grain yield with topography and soil properties. Agron. J. 92, 75–83 (2000).  https://doi.org/10.2134/agronj2000.92175xCrossRefGoogle Scholar
  5. 5.
    Timlin, D.J., Pachepsky, Y., Snyder, V.A., Bryant, R.B.: Spatial and temporal variability of corn grain yield on a hillslope. Soil Sci. Soc. Am. J. 62, 764–773 (1998).  https://doi.org/10.2136/sssaj1998.03615995006200030032xCrossRefGoogle Scholar
  6. 6.
    Marques Da Silva, J.R., Alexandre, C.: Spatial variability of irrigated corn yield in relation to field topography and soil chemical characteristics. Precis. Agric. 6, 453–466 (2005).  https://doi.org/10.1007/s11119-005-3679-3CrossRefGoogle Scholar
  7. 7.
    Marques da Silva, J.R., Silva, L.L.: Evaluation of Maize yield spatial variability based on field flow density. Biosyst. Eng. 95, 339–347 (2006).  https://doi.org/10.1016/j.biosystemseng.2006.06.015CrossRefGoogle Scholar
  8. 8.
    Maestrini, B., Basso, B.: Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Sci. Rep. 8, 14833 (2018).  https://doi.org/10.1038/s41598-018-32779-3CrossRefGoogle Scholar
  9. 9.
    Haverkort, J.A.: Plant. In: Delleman J, Hanse L (eds.) Potato Handbook. Aardappel BV, pp 121–214 (2018)Google Scholar
  10. 10.
    Lesczynski, D.B., Tanner, C.B.: Seasonal variation of root distribution of irrigated, field-grown Russet Burbank potato. Am. Potato J. 53, 69–78 (1976).  https://doi.org/10.1007/BF02852656CrossRefGoogle Scholar
  11. 11.
    Vos, J., Groenwold, J.: Root growth of potato crops on a marine-clay soil. Plant Soil 94, 17–33 (1986).  https://doi.org/10.1007/BF02380587CrossRefGoogle Scholar
  12. 12.
    Scott, E.J.A., Scott, R.K.: Principles of agronomy and their application in the potato industry. In: Harris, P.M. (ed.) The Potato Crop, 2nd edn, pp. 816–881. Springer, Dordrecht (1992).  https://doi.org/10.1007/978-94-011-2340-2_17CrossRefGoogle Scholar
  13. 13.
    Actueel Hoogtebestand Nederland De details van het Actueel Hoogtebestand Nederland. http://ahn.maps.arcgis.com/apps/Cascade/index.html?appid=75245be5e0384d47856d2b912fc1b7ed. Accessed 14 Oct 2019
  14. 14.
    Gorelick, N., Hancher, M., Dixon, M., et al.: Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. (2017).  https://doi.org/10.1016/j.rse.2017.06.031CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  • Bernardo Maestrini
    • 1
    Email author
  • Matthijs Brouwer
    • 1
  • Thomas Been
    • 1
  • Lambertus A. P. Lotz
    • 1
  1. 1.Wageningen University and ResearchWageningenThe Netherlands

Personalised recommendations