Advertisement

Using Virtual Research Environments in Agro-Environmental Research

  • Rob M. Lokers
  • M. J. Rob KnapenEmail author
  • Leonardo Candela
  • Steven Hoek
  • Wouter Meijninger
Conference paper
  • 295 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 554)

Abstract

Tackling some of the grand global challenges, agro-environmental research has turned more and more into an international venture, where distributed research teams work together to solve complex research questions. Moreover, the interdisciplinary character of these challenges requires that a large diversity of different data sources and information is combined in new, innovative ways. There is a pressing need to support researchers with environments that allow them to efficiently work together and co-develop research. As research is often data-intensive, and big data becomes a common part of a lot of research, such environments should also offer the resources, tools and workflows that allow to process data at scale if needed. Virtual research environments (VRE), which combine working in the Cloud, with collaborative functions and state of the art data science tools, can be a potential solution. In the H2020 AGINFRA+ project, the usability of the VREs has been explored for use cases around agro-climatic modelling. The implemented pilot application for crop growth modelling has successfully shown that VREs can support distributed research teams in co-development, helps them to adopt open science and that the VRE’s cloud computing facilities allow large scale modelling applications.

Keywords

Virtual research environment Agro-climatic modelling Data science Big data Crop growth modelling 

Notes

Acknowledgment

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the AGINFRA PLUS project (grant agreement No 731001).

References

  1. 1.
    United Nations: Sustainable Development Goals. https://sustainabledevelopment.un.org/topics/sustainabledevelopmentgoals. Accessed 29 Sept 2019
  2. 2.
    European Commission: H2020 Societal Challenges. https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges. Accessed 29 Sept 2019
  3. 3.
    Lokers, R., Knapen, R., Janssen, S., van Randen, Y., Jansen, J.: Analysis of big data technologies for use in agro-environmental science. Environ. Model. Softw. 84, 494–504 (2016).  https://doi.org/10.1016/j.envsoft.2016.07.017CrossRefGoogle Scholar
  4. 4.
    Jones, S., Abramatic, J.F. (eds.): European Open Science Cloud (EOSC) Strategic Implementation Plan (2019)Google Scholar
  5. 5.
    Barker, M., et al.: The global impact of science gateways, virtual research environments and virtual laboratories. Future Gener. Comput. Syst. 95, 240–248 (2019).  https://doi.org/10.1016/j.future.2018.12.026CrossRefGoogle Scholar
  6. 6.
    Ahmed, I., Poole, M., Trudeau, A.: A typology of virtual research environments (2018).  https://doi.org/10.24251/hicss.2018.087
  7. 7.
    Zuiderwijk, A.: Analysing open data in virtual research environments: new collaboration opportunities to improve policy making. Int. J. Electron. Gov. Res. (IJEGR) 13(4), 76–92 (2017).  https://doi.org/10.4018/ijegr.2017100105CrossRefGoogle Scholar
  8. 8.
    Zuiderwijk, A., Jeffery, K., Bailo, D., Yin, Y.: Using open research data for public policy making: opportunities of virtual research environments (2016).  https://doi.org/10.1109/CeDEM.2016.20
  9. 9.
    Maier, M.W.: Architecting principles for systems-of-systems. INCOSE Int. Symp. 6(1), 565–573 (1996).  https://doi.org/10.1002/j.2334-5837.1996.tb02054.xMathSciNetCrossRefGoogle Scholar
  10. 10.
    D4Science Consortium. D4Science: An e-infrastructure supporting virtual re-search environments. www.d4science.org
  11. 11.
    EGI Foundation: EGI e-infrastructure. www.egi.eu
  12. 12.
    OpenAIRE Consortium OpenAIRE: The European scholarly communication data infrastructure. www.openaire.eu
  13. 13.
    Janssen, H., et al.: AgroDataCube: A Big Open Data collection for Agri-Food Applications. Wageningen Environmental Research (2018).  https://doi.org/10.18174/455759
  14. 14.
    Caracciolo, C., et al.: The AGROVOC linked dataset. Semant. Web J. (2013).  https://doi.org/10.3233/sw-130106CrossRefGoogle Scholar
  15. 15.
    German Federal Institute for Risk Assessment. Foodrisk-labs. https://foodrisklabs.bfr.bund.de/foodrisk-labs/
  16. 16.
    Assante, M., et al.: Enacting open science by D4Science. Future Gener. Comput. Syst. (2019).  https://doi.org/10.1016/j.future.2019.05.063CrossRefGoogle Scholar
  17. 17.
    Assante M, et al.: Realising a science gateway for the agri-food: the AGINFRA PLUS Experience. In: 11th International Workshop on Science Gateways (IWSG 2019) (2019)Google Scholar
  18. 18.
    de Wit, A., et al.: 25 years of the WOFOST cropping systems model. Agric. Syst. 168, 154–167 (2019).  https://doi.org/10.1016/j.agsy.2018.06.018CrossRefGoogle Scholar
  19. 19.
    Coro, G., Panichi, G., Scarponi, P, Pagano, P.: Cloud computing in a distributed e-infrastructure using the web processing service standard. Concurr. Comput.: Pract. Experience 29(18), e4219 (2017).  https://doi.org/10.1002/cpe.4219CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  • Rob M. Lokers
    • 1
  • M. J. Rob Knapen
    • 1
    Email author
  • Leonardo Candela
    • 2
  • Steven Hoek
    • 1
  • Wouter Meijninger
    • 1
  1. 1.Wageningen Environmental ResearchWageningenThe Netherlands
  2. 2.Istituto di Scienza e Tecnologie dell’Informazione, National Research Council of ItalyPisaItaly

Personalised recommendations