Advertisement

Producing Mid-Season Nitrogen Application Maps for Arable Crops, by Combining Sentinel-2 Satellite Images and Agrometeorological Data in a Decision Support System for Farmers. The Case of NITREOS

  • Emmanuel LekakisEmail author
  • Dimitra Perperidou
  • Stylianos Kotsopoulos
  • Polimachi Simeonidou
Conference paper
  • 93 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 554)

Abstract

NITREOS (Nitrogen Fertilization, Irrigation and Crop Growth Monitoring using Earth Observation Systems) is a farm management information system (FMIS) for organic and conventional agriculture which aims in enabling farmers to tackle crop abiotic stresses and control important growing parameters to ensure crop health and optimal yields. NITREOS employs a user friendly, web-based platform that integrates satellite remote sensing data, numerical weather predictions and agronomic models, and offers a suite of farm management advisory services to address the needs of smallholder farmers, agricultural cooperatives and agricultural consultants. This paper provides an analysis of different methodologies employed in the nitrogen fertilization service of NITREOS. The methods are based on the determination of the Nitrogen Fertilization Optimization Algorithm for cotton, maize and wheat crops. Available agro-meteorological data on two distinct agricultural regions were used for the calibration and validation of the recommended Nitrogen rates.

Keywords

Nitrogen fertilization NITREOS Earth observation data FMIS 

Notes

Acknowledgments

NITREOS - Nitrogen Fertilization, Irrigation and Crop Growth Monitoring using Earth Observation Systems (2018). Project funded by the European Space Agency – ESA. Contract No: 4000124362/18/NL/NR.

References

  1. 1.
    Fountas, S., Aggelopoulou, K., Gemtos, T.A.: Precision agriculture: crop management for improved productivity and reduced environmental impact or improved sustainability. In: Iakovou, E., Bochtis, D., Vlachos. D., Aidonis, D. (eds.) Supply Chain Management for Sustainable Food Networks, Wiley-Blackwell, Oxford (2016)CrossRefGoogle Scholar
  2. 2.
    Bu, Η.: Yield and quality prediction using satellite passive imagery and ground-based active optical sensors in sugar beet, spring wheat, corn, and sunflower. Master thesis, Soil Science Department, North Dakota State University (2014)Google Scholar
  3. 3.
    Havlin, J.L., Beaton, J.D., Tisdale, S.L., Nelson, W.L.: Soil Fertility and Fertilizers: An Introduction to Nutrient Management. Pearson Education Inc., Upper Saddle River (2005)Google Scholar
  4. 4.
    Bach, H., Migdall, S., Mauser, W., Angermair, W., Sephton, A.J., Martin-de-Mercado, G.: An integrative approach of using satellite-based information for precision farming: TalkingFields. In: Proceedings 61st International Astronautical Congress, Prague (2010)Google Scholar
  5. 5.
    He, J., Wang, J., He, D., Dong, J., Wang, Y.: The design and implementation of an integrated optimal fertilization decision support system. Math. Comput. Model. 54, 3–4 (2011)Google Scholar
  6. 6.
    Söderström, M, Stadig, H, Martinsson, J, Piikki, K, Stenberg, M.: CropSAT – a public satellite-based decision support system for variable-rate nitrogen fertilization in Scandinavia. In: Proceedings of the 13th International Conference on Precision Agriculture. Monticello, IL, USA, p. 8. International Society of Precision Agriculture (2016)Google Scholar
  7. 7.
    Raun, W.R., et al.: In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 93, 131–138 (2001)CrossRefGoogle Scholar
  8. 8.
    Raun, W.R., et al.: Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 94, 815–820 (2002)CrossRefGoogle Scholar
  9. 9.
    Lukina, E.V., Freeman, K.W., Wynn, K.J., Thomason, W.E., Mullen, R.W., Klatt, A.R., et al.: Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. J. Plant Nutr. 24, 885–898 (2001)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Raun, W.R., et al.: Optical sensor-based algorithm for crop nitrogen fertilization. Commun. Soil Sci. Plant Anal. 36, 2759–2781 (2005)CrossRefGoogle Scholar
  12. 12.
    Barger, G.L.: Total growing degree days. Wkly Weather Crop Bull. 56, 10 (1969)Google Scholar
  13. 13.
    Johnson, G.V., Raun, W.R.: Nitrogen response index as a guide to fertilizer management. J. Plant Nutr. 26, 249–262 (2003)CrossRefGoogle Scholar
  14. 14.
    Mullen, R.W., Freeman, K.W., Raun, W.R., Johnson, G.V., Stone, M.L., Solie, J.B.: Identifying an in-season response index and the potential to increase wheat yield with nitrogen. Agron. J. 95, 347–351 (2003)CrossRefGoogle Scholar
  15. 15.
    Teal, R.K., et al.: In-season prediction of corn grain yield potential using normalized difference vegetation index. Agron. J. 98, 1488–1494 (2006)CrossRefGoogle Scholar
  16. 16.
    Morris, K.B., et al.: Mid-season recovery from nitrogen stress in winter wheat. J. Plant Nutr. 29, 727–745 (2006)CrossRefGoogle Scholar
  17. 17.
    Inman, D., Khosla, R., Reich, R.M., Westfall, D.G.: Active remote sensing and grain yield in irrigated maize. Precis. Agric. 8, 241–252 (2007)CrossRefGoogle Scholar
  18. 18.
    Ortiz-Monasterio, J.I., Raun, W.R.: Reduced nitrogen and improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management. J. Agric. Sci. 145, 1–8 (2007)CrossRefGoogle Scholar
  19. 19.
    Li, F., Miao, Y., Zhang, F., Cui, Z., Li, R., Chen, X., et al.: In-season optical sensing improves nitrogen-use efficiency for winter wheat. Soil Sci. Soc. Am. J. 73, 1566–1574 (2009)CrossRefGoogle Scholar
  20. 20.
    Tubaña, B.S., et al.: Adjusting midseason nitrogen rate using a sensor-based optimization algorithm to increase use efficiency in corn. J. Plant Nutr. 31, 1393–1419 (2008)CrossRefGoogle Scholar
  21. 21.
    Roberts, D., Brorsen, B., Taylor, R., Solie, J., Raun, W.: Replicability of nitrogen recommendations from ramped calibration strips in winter wheat. Precis. Agric. 12, 653–665 (2011)CrossRefGoogle Scholar
  22. 22.
    Singh, B., Sharma, R., Jaspreet, K., Jat, M.L., Martin, K.L., Yadvinder, S., et al.: Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agron. Sustain. Dev. 31, 589–603 (2011)CrossRefGoogle Scholar
  23. 23.
    Tubaña, B., Viator, S., Teboh, J., Lofton, J., Kanke, Y.: Feasibility of using remote sensing technology in N management in sugarcane production. Int. Sugar J. 113, 747 (2011)Google Scholar
  24. 24.
    Lofton, J., Tubaña, B.S., Kanke, Y., Teboh, J., Viator, H., Dalen, M.: Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors 12, 7529–7547 (2012)CrossRefGoogle Scholar
  25. 25.
    Arnall, D.B.: Analysis of the coefficient of variation of remote sensor readings in winter wheat, and development of a sensor based mid-season n recommendation for cotton. Ph.D. thesis, Oklahoma State University. Department of Plant and Soil Sciences (2008)Google Scholar
  26. 26.
    Porter, W.: Sensor based nitrogen management for cotton production in coastal plain soils. All Theses. 914. https://tigerprints.clemson.edu/all_theses/914 (2010)
  27. 27.
    Arnall, D.B., Joy, M., Abit, M., Taylor, R.K., Raun, W.R.: Development of an NDVI-based nitrogen rate calculator for cotton. Crop Sci. 56, 3263–3271 (2016)CrossRefGoogle Scholar
  28. 28.
    Raper, T.B., Varco, J.J., Hubbard, K.J.: Canopy-based normalized difference vegetation index sensors for monitoring cotton nitrogen status. Agron. J. 105, 1345–1354 (2013)CrossRefGoogle Scholar
  29. 29.
    Boquet, D.J., Breitenbeck, G.A.: Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. Crop Sci. 40, 1685–1693 (2000)CrossRefGoogle Scholar
  30. 30.
    Khalilian, A., Henderson, W., Han, Y., Wiatrak, P.J.: Improving nitrogen use efficiency in cotton through optical sensing. In: Proceedings of the Beltwide Cotton Conferences, National Cotton Council of America, Memphis (2008)Google Scholar
  31. 31.
    Miller, E.C., Bushong, J.T., Raun, W.R., Abit, M.J.M., Arnall, D.B.: Predicting early season nitrogen rates of corn using indicator crops. Agron. J. 109, 2863–2870 (2017)CrossRefGoogle Scholar
  32. 32.
    Dhital, S., Raun, W.R.: Variability in optimum nitrogen rates for maize. Agron. J. 108, 2165–2173 (2016)CrossRefGoogle Scholar
  33. 33.
    Butchee, K.S., May, J., Arnall, B.: Sensor based nitrogen management reduced nitrogen and maintained yield. Crop Manag. 10 (2011)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  • Emmanuel Lekakis
    • 1
    Email author
  • Dimitra Perperidou
    • 1
  • Stylianos Kotsopoulos
    • 1
  • Polimachi Simeonidou
    • 1
  1. 1.Agroapps P.C.ThessalonikiGreece

Personalised recommendations