Advertisement

Adjustable Restraining Frames for Systematic Investigation of Cracking Risk and Crack Formation in Reinforced Concrete Under Restrained Conditions

  • Dirk SchlickeEmail author
  • Katrin Hofer
  • Nguyen Viet Tue
Chapter
  • 63 Downloads
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)

Abstract

The Institute of Structural Concrete at Graz University of Technology developed adjustable restraining frames (ARFs) in order to enable systematic investigations of the behaviour of reinforced concrete under restrained conditions. The focus was hereby set on the following aspects:
  • holistic experimental simulation of the stress history due to imposed deformations including cracking and crack opening by time, as well as

  • experimental determination of cracking patterns to be expected in externally restrained and ordinarily reinforced thick members (reinforcement is located near the surface whereby the core is not affected by reinforcement; Ac ≫ Ac,eff).

The results of these experiments give profound insights on the stress history, the cracking risk, the crack pattern and further crack opening to be expected due to the complex interplay of thermal, hygric and mechanical behaviour of concrete. Special attention was given to the restraining condition as well as the present reinforcement. In particular, the most important results of the whole campaign were:
  • confirmation and additional findings regarding the effect of viscoelastic behaviour on the hardening-induced stress history,

  • clarification of the behaviour of reinforced concrete when it comes to superimposition of hardening-induced stresses with further stresses due to imposed deformations during service life and

  • experimental verification of the existence and effectiveness of secondary cracks in thick members on the limitation of the crack width of the primary crack.

Besides the outlined findings and their application in guidelines for crack risk assessment (ÖBV in Analytical design of watertight structures with optimized concrete (in German). Austrian society for construction technology, Vienna, Austria, 2018) as well as crack width control and jointless design (BAW in Merkblatt früher Zwang – Rissbreitenbegrenzung für frühen Zwang in massiven Wasserbauwerken. Referat Massivbau der BAW, Karlsruhe, 2010; BAW in Merkblatt Zwang bei fugenlosen Wasserbauwerken. Referat Massivbau der BAW, Karlsruhe, 2019), these experiments provide also clear and transparent data for the verification of thermo-mechanical calculation models for simulation of hardening-induced stress histories, (e.g. Schlicke in Mindestbewehrung für zwangbeanspruchten Beton. Graz University of Technology, Graz, 2014; Heinrich in effiziente Berechnung viskoelastischer Spannungen in gezwängten Bauteilen. Graz University of Technology, Graz, 2018; Jędrzejewska in Constr Build Mater 174, 2018) as well as nonlinear calculation models for simulation of secondary cracking in thick concrete members.

Keywords

Restraining frames Restraint stressing Cracking risk Crack width development Superposition of hardening-induced stresses with restraint stressing during service life 

Notes

Acknowledgements

The cooperation with the Federal Waterways Engineering and Research Institute (BAW) in Karlsruhe, Germany was scientifically and financially significant for the project’s success and we thank Dipl.-Ing. Rainer Ehmann and Dr.-Ing. Jörg Bödefeld for the prosperous collaboration. The authors would also like to thank the team of the Laboratory for Structural Engineering at Graz University of Technology (LKI) for their great support.

References

  1. BAW-Merkblatt. (2010). Merkblatt früher Zwang – Rissbreitenbegrenzung für frühen Zwang in massiven Wasserbauwerken. Referat Massivbau der BAW, Karlsruhe.Google Scholar
  2. BAW-Merkblatt. (2019). Merkblatt Zwang bei fugenlosen Wasserbauwerken. Referat Massivbau der BAW, Karlsruhe (Gelbdruck).Google Scholar
  3. Bentur, A., & Kovler, K. (2003). Evaluation of early age cracking characteristics in cementitious systems. Materials and Structures, 36, 183–190.CrossRefGoogle Scholar
  4. Berger, J., & Feix, J. (2018). Constraint forces from imposed deformations. Structural Concrete (online version of record before inclusion in an issue) 10 p.  https://doi.org/10.1002/suco.201800123.CrossRefGoogle Scholar
  5. Bjøntegaard, Ø., & Sellevold, E. J. (2004). The temperature-stress testing machine (TSTM): Capabilities and limitations. In J. Weiss, K. Kovler, J. Marchand, & S. Mindess (Eds.), International RILEM Symposium Advances in Concrete Through Science and Engineering, RILEM proceeding 48. e-ISBN: 2912143926.Google Scholar
  6. EN 1992-1-1:2015. (2015). EUROCODE 2: Design of concrete structures—Part 1-1: General rules and rules for buildings.Google Scholar
  7. Faria, R., Leitão, L., Teixeira, L., Azenha, M., & Cusson, D. (2016). A structural experimental technique to characterize the viscoelastic behaviour of concrete under restrained deformations. Strain, 53, 1305–1475.  https://doi.org/10.1111/str.12216.CrossRefGoogle Scholar
  8. Fellmann, W., & Menn, C. (1984). Zugversuche an Stahlbetonscheiben. Technical Report No. 7604-1. Institute of Structural Engineering, ETH Zürich.Google Scholar
  9. fib Model Code 2010 (2013), fib Model Code for Concrete Structures 2010.Google Scholar
  10. Gomes, J., Azenha, M., Granja, J., Faria, R., Sousa, C., Zahabizadeh, B., et al. (2018). Proposal of a test set up for simultaneous application of axial restraint and vertical loads to slab-like specimens: Sizing principles and application. In International RILEM/COST conference Interdisciplinary Approaches for Cement-based Materials and Structural Concrete. SynerCrete’18, Funchal (pp. 303–308).  https://doi.org/10.5281/zenodo.1405563.
  11. Grube, H. (1991). Ursachen des Schwindens von Beton und Auswirkungen auf Betonbauteile, Schriftenreihe der Zementindustrie, Heft 52/ 1991. Düsseldorf: Verlag Bau + Technik.Google Scholar
  12. Heinrich P. J. (2018), Effiziente Berechnung viskoelastischer Spannungen in gezwängten Bauteilen. Ph.D. thesis, Graz University of Technology. (in German).Google Scholar
  13. Helmus, M. (1990). Mindestbewehrung zwangbeanspruchter dicker Stahlbetonbauteile, DAfStb Heft 412. Berlin: Deutscher Ausschuss für Stahlbeton.Google Scholar
  14. Jędrzejewska, A., et. al. (2018). COST TU1404 benchmark on macroscopic modelling of concrete and concrete structures at early age: Proof-of-concept stage. Construction and Building Materials, 174. ISSN 0950-0618.CrossRefGoogle Scholar
  15. Kanavaris, F., Azenha, M., Soutsos, M., & Kovler, K. (2019). Assessment of behaviour and cracking susceptibility of cementitious systems under restrained conditions through ring tests: A critical review. Cement and Concrete Composites, 95, 137–153.  https://doi.org/10.1016/j.cemconcomp.2018.10.016.CrossRefGoogle Scholar
  16. Klausen, A. E., Kanstad, T., Bjøntegaard, Ø. (2015). Updated temperature-stress testing machine (TSTM): Introductory tests, calculations, verification, and investigation of variable fly ash content. In Mechanics and Physics of Creep, Shrinkage and Durability of Concrete and Concrete Structures. CONCREEP-10, Vienna.  https://doi.org/10.1061/9780784479346.086.
  17. ÖBV Bulletin. (2018). Analytical design of watertight structures with optimized concrete (in German). Vienna, Austria: Austrian society for constructuion technology.Google Scholar
  18. Schlicke, D. (2014). Mindestbewehrung für zwangbeanspruchten Beton. Ph.D. thesis (2nd Ed.) Graz University of Technology.Google Scholar
  19. Schlicke, D., & Dorfmann, E. (2017). Influence of gradual imposition of tensile stresses on associated viscoelastic behaviour. In RILEM/COST Conference EAC-02, Brussels, Belgium.Google Scholar
  20. Schlicke, D., & Tue, N. V. (2015). Minimum reinforcement for crack width control in restrained concrete members considering the deformation compatibility. Structural Concrete, 16, 221–232.  https://doi.org/10.1002/suco.201400058.CrossRefGoogle Scholar
  21. Schlicke, D., Turner, K., & Tue, N. V. (2015). Decrease of tensile creep response under realistic restraint conditions in structures. In: Mechanics and Physics of Creep, Shrinkage and Durability of Concrete and Concrete Structures. CONCREEP-10, Vienna.  https://doi.org/10.1061/9780784479346.158.
  22. Schnell, J., Albert, A., & Dridiger, A. (2017). Ressourcenschonende Reduktion von Bewehrungsstahl in Hochbaudecken, TU Kaiserslautern, ForschungsberichtBBSR/ZukunftBAU (SWD-10.08.18.7-14.17).Google Scholar
  23. Springenschmidt, R., Breitenbucher, R., & Mangold M. (1994). Development of the cracking frame and temperature stress testing machine. In R. Springenschmidt (Ed.), International RILEM Symposium Thermal Cracking in Concrete at Early-Age, RILEM proceedings 25, Munich (pp. 137–144). London, UK: E&FN Spon.Google Scholar
  24. Staquet, S., Delsaute, B., Darquennes, A., & Espion, B. (2012). Design of a revisited TSTM system for testing concrete since setting time under free and restraint conditions. In Crack Control of Mass Concrete and Related Issues concerning Early-Age of Concrete Structures (pp. 99–110). RILEM Publications SARL.Google Scholar
  25. Thielen, G., & Hintzen, W. (1994). Investigation of concrete behaviour under restraint with a Temperature-Stress testing machine. In R. Springenschmid (Ed.), International RILEM Symposium Thermal cracking in concrete in early ages, RILEM Proceedings 25, Munich (pp. 135–152). London, UK: E&FN Spon.Google Scholar
  26. Turner, K. (2017). Ganzheitliche Betrachtung zur Ermittlung der Mindestbewehrung für fugenlose Wasserbauwerke. Ph.D. thesis, Graz University of Technology (in German).Google Scholar
  27. VDZ Zement-Merkblatt “Risse in Beton” Nr. B18, Verein Deutscher Zementwerke e.V., Düsseldorf, 2014.Google Scholar
  28. Westman, G., & Emborg, M. (1994). Development of a relaxation frame. Nordic Concrete Research, Publication No.15.2/94, Oslo (pp. 89–96).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dirk Schlicke
    • 1
    Email author
  • Katrin Hofer
    • 1
    • 2
  • Nguyen Viet Tue
    • 1
  1. 1.Institute of Structural Concrete, Graz University of TechnologyGrazAustria
  2. 2.Federal Waterways Engineering and Research Institute (BAW)KarlsruheGermany

Personalised recommendations