Testing Concrete Since Setting Time Under Free and Restrained Conditions

  • Brice DelsauteEmail author
  • Stéphanie Staquet
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)


Restrained deformations in concrete structures induce the development of stresses and sometimes cracking. Therefore the whole service life of concrete structures is influenced by the appropriate consideration of the early age behaviour of concrete under restrained conditions. For that reason, several devices were developed in the past to characterize the risk of cracking of cement-based materials. In the 1990s, a new experimental concrete testing concept has been designed: the Temperature Stress Testing Machine (TSTM). The device is able to monitor several parameters such as the age of cracking, the stiffness development and the stress relaxation. Between 1990 and 2010, less than fifteen laboratories worldwide have developed or acquired this kind of experimental equipment. All devices bear some similarities but major differences remain in the test set up designs, in the testing processes and also in the scale of the material used. This chapter summarizes all existing technics used to assess the behavior of concrete under restrained deformation, a comparison of the different existing TSTM is presented. New advanced techniques aim at monitor the cracking risk of cement-based materials such as the active ring test or the elliptical ring test are also presented.


Restrained deformation Cracking Shrinkage Early age Creep/relaxation 


  1. Altoubat, S. A., & Lange, D. A. (2001). Creep, shrinkage, and cracking of restrained concrete at early age. ACI Materials Journal, 98(4), 323–331.Google Scholar
  2. Altoubat, S. A., & Lange, D. A. (2002). Grip-Specimen interaction in uniaxial restrained tests. In Concrete: Materials science to applications (pp. 189–204), edited by ACI.Google Scholar
  3. Aly, T., & Sanjayan, J. G. (2008). Shrinkage cracking properties of slag concretes with one-day curing. Magazine of Concrete Research, 60(1), 41–48.CrossRefGoogle Scholar
  4. Ausweger, M., Binder, E., Lahayne, O., Reihsner, R., Maier, G., Peyerl, M., et al. (2019). Early-age evolution of strength, stiffness, and non-aging creep of concretes: Experimental characterization and correlation analysis. Materials, 12(2), 207.CrossRefGoogle Scholar
  5. Baesens, P., & Delsaute, B. (2010). Comportement de Bétons Au Jeune Âge En Conditions de Déformations Libres et Restreintes. Université Libre de Bruxelles.Google Scholar
  6. Banthia, N., Azzabi, M., & Pigeon, M. (1993). Restrained shrinkage cracking in fibre-reinforced cementitious composites. Materials and Structures, 26(7), 405–413.CrossRefGoogle Scholar
  7. Banthia, N., Azzabi, M., & Pigeon, M. (1995). Restrained shrinkage tests on fiber reinforced cementitious composites. ACI Special Publication, 155, 137–152.Google Scholar
  8. Banthia, N., Yan, C., & Mindess, S. (1996). Restrained shrinkage cracking in fiber reinforced concrete: A novel test technique. Cement and Concrete Research, 26(1), 9–14.CrossRefGoogle Scholar
  9. Benboudjema, F., Carette, J., Delsaute, B., Honorio de Faria, T., Knoppik, A., Lacarrière, L., et al. (2019). Mechanical properties. In E. M. R. Fairbairn and M. Azenha (Eds.), Thermal cracking of massive concrete structures—State of the art report of the rilem technical committee 254-CMS (pp. 69–114).Google Scholar
  10. Bendimerad, A. Z., Delsaute, B., Roziere, E., Staquet, S., & Loukili, A. (2020). Advanced techniques for the study of shrinkage-induced cracking of concrete with recycled aggregates at early age. Construction and Building Materials.Google Scholar
  11. Bentur, A. (2003a). Evaluation of early age cracking characteristics in cementitious systems. Materials and Structures, 36(257), 183–190.CrossRefGoogle Scholar
  12. Bentur, A. (2003b). Terminology and definitions. In A. Bentur (Ed.), Early age cracking in cementitious systems—Report of RILEM technical committee 181-EAS—Early age shrinkage induced stresses and cracking in cementitious systems (pp. 13–15). RILEM Publications SARL.Google Scholar
  13. Bjontegaard, O. (1999). Thermal dilation and autogenous deformation as driving forces to self-induced stresses in high-performance concrete.Google Scholar
  14. Bloom, R., & Bentur, A. (1995). Free and restrained shrinkage of normal and high-strength concretes. ACI Materials Journal, 92(2), 211–217.Google Scholar
  15. Boulay, C., & Colson, A. (1981). Un Extensomètre à Béton Éliminant l’influence Des Déformations Transversales Sur La Mesure Des Déformations Longitudinales. Materials and Structures, 14(79), 35–38.Google Scholar
  16. Boulay, C., Crespini, M., Delsaute, B., & Staquet, S. (2012). Monitoring of the creep and the relaxation behaviour of concrete since setting time, Part 1 : Compression. In Strategies for sustainable concrete structures (p. 10). Aix-en-Provence.Google Scholar
  17. Boulay, C., Staquet, S., Azenha, M., Deraemaeker, A., Crespini, M., Carette, J., et al. (2013). Monitoring elastic properties of concrete since very early age by means of cyclic loadings, ultrasonic measurements, natural resonant frequency of composite beam (EMM-ARM) and with smart aggregates. In Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS 2013.Google Scholar
  18. Boulay, C., Staquet, S., Delsaute, B., C, J., C, Michela, Yazoghli-Marzouk, O., et al. (2014). How to monitor the modulus of elasticity of concrete, automatically since the earliest age? Materials and Structures, 47(1–2), 141–155.CrossRefGoogle Scholar
  19. Bourchy, A. (2018). Relation Chaleur d’hydratation Du Ciment : Montée En Température et Contraintes Générées Au Jeune Âge Du Béton. Université Paris-Est.Google Scholar
  20. Briffaut, M., Benboudjema, F., Torrenti, J. M., & Nahas, G. (2011a). A thermal active restrained shrinkage ring test to study the early age concrete behaviour of massive structures. Cement and Concrete Research, 41(1), 56–63.CrossRefGoogle Scholar
  21. Briffaut, M., Benboudjema, F., Torrenti, J. M., & Nahas, G. (2011b). Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Engineering Structures, 33(4), 1390–1401.CrossRefGoogle Scholar
  22. Carette, J., Delsaute, B., & Staquet, S. (2018a). Estimating the stress development in early age concrete with mineral additions from coupled measurements. In Interdisciplinary Approaches for Cement-based Materials and Structural Concrete: Synergizing Expertise and Bridging Scales of Space and Time (pp. 171–176).Google Scholar
  23. Carette, J., Joseph, S., Cizer, Ö., & Staquet, S. (2018b). Decoupling the autogenous swelling from the self-desiccation deformation in early age concrete with mineral additions: Micro-macro observations and unified modelling. Cement and Concrete Composites, 85, 122–132.CrossRefGoogle Scholar
  24. (n.d.). CEOS.Fr Comportement et Evaluation Des Ouvrages Spéciaux Vis-à-Vis de La Fissuration et Du Retrait.” Retrieved January 23, 2019.
  25. Charron, J. P. (2003). Contribution à l’étude Du Comportement Au Jeune Âge Des Matériaux Cimentaires En Conditions Des Déformations Libre et Restreinte. Ph.D. thesis, Université Laval.Google Scholar
  26. Darquennes, A. (2009). Comportement Au Jeune Âge de Bétons Formulés à Base de Ciment Au Laitier de Haut Fourneau En Condition de Déformations Libre et Restreinte. Ph.D. thesis, Université Libre de Bruxelles.Google Scholar
  27. Darquennes, A., Staquet, S., & Espion, B. (2006). Shrinkage of slag cement concrete in free and restrained conditions. In O. M. Jensen, P. Lura, & K. Kovler (Eds.), International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation (p. 10).Google Scholar
  28. Delsaute, B. (2016). New approach for monitoring and modelling of the creep and shrinkage behaviour of cement pastes, mortars and concretes since setting time. Université Libre de Bruxelles (BATir) and Université Paris Est (IFSTTAR).Google Scholar
  29. Delsaute, B. (2019). Influence of cyclic movement on the hardening process of grout: case of offshore wind turbine installation. In G. Pijaudier-cabot, P. Grassl, & C. La Borderie (Eds.), 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-X (p. 11). Anglet.Google Scholar
  30. Delsaute, B., Boulay, C., Granja, J., Carette, J., Azenha, M., Dumoulin, C., et al. (2016a). Testing concrete E-modulus at very early ages through several techniques: An inter-laboratory comparison. Strain, 52(2), 91–109.CrossRefGoogle Scholar
  31. Delsaute, B., Boulay, C., & Staquet, S. (2016b). Creep testing of concrete since setting time by means of permanent and repeated minute-long loadings. Cement and Concrete Composites, 73, 75–88.CrossRefGoogle Scholar
  32. Delsaute, B., Carette, J., & Staquet, S. (2013). Monitoring of the creep and the relaxation at very early age: Complementary results on the CEOS concrete. In VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures (IA-FramCOS-8) (pp. 453–458).Google Scholar
  33. Delsaute, B., Furnémont, R., Königsberger, M., & Staquet, S. (2018). Influence de Mouvement Cyclique Sur Le Durcissement de Coulis: Cas Des Éoliennes Offshores. In 19ème édition des Journées Scientifiques (RF) 2B (Regroupement Francophone pour la Recherche et la Formation sur le Béton (p. 10). Bayonne, France.Google Scholar
  34. Delsaute, B., Hamami, A., Rozière, E., Staquet, S., & Loukili, A. (n.d.). Autogenous and drying shrinkage induced stresses in early age CEM I concrete – influence of the nature and the porosity of gravel. In Cement and Concrete Composites.Google Scholar
  35. Delsaute, B., & Staquet, S. (2014). Early age creep and relaxation modelling of concrete under tension and compression. In CONMOD 2014: Proceedings of the RILEM International Symposium on Concrete Modelling (pp. 12–14).Google Scholar
  36. Delsaute, B., & Staquet, S. (2017). Decoupling thermal and autogenous strain of concretes with different water/cement ratios during the hardening process. Advances in Civil Engineering Materials, 6(2).Google Scholar
  37. Delsaute, B., & Staquet, S. (2019). Development of strain-induced stresses in early age concrete composed of recycled gravel or sand. Journal of Advanced Concrete Technology, 17(6), 319–334.CrossRefGoogle Scholar
  38. Delsaute, B., Staquet, S., & Boulay, C. (2012). Monitoring of the creep and the relaxation behaviour of concrete since setting time, Part 2 : Traction. In Strategies for Sustainable Concrete Structures (p. 10). Aix-en-Provence.Google Scholar
  39. Delsaute, B., Staquet, S., & Boulay, C. (2014). Early age creep and relaxation behavior of concrete under tension and compression. In Concrete Innovation Conference CIC 2014 (p. 10). Oslo.Google Scholar
  40. Delsaute, B., Torrenti, J.-M., & Staquet, S. (2016c). Monitoring and modeling of the early age properties of the vercors concrete. In TINCE 2016 (p. 12). Paris.Google Scholar
  41. Delsaute, B., Torrenti, J. M., & Staquet, S. (2017). Modeling basic creep of concrete since setting time. Cement and Concrete Composites, 83, 239–250.CrossRefGoogle Scholar
  42. Dong, W., Yuan, W., Zhou, X., & Wang, F. (2018). The fracture mechanism of circular/elliptical concrete rings under restrained shrinkage and drying from top and bottom surfaces. Engineering Fracture Mechanics, 189, 148–163.CrossRefGoogle Scholar
  43. Göbel, L., Königsberger, M., Osburg, A., & Pichler, B. (2018a). Viscoelastic behavior of polymer-modified cement pastes: insight from downscaling short-term macroscopic creep tests by means of multiscale modeling. Applied Sciences, 8(4), 487.CrossRefGoogle Scholar
  44. Göbel, L., Osburg, A., & Pichler, B. (2018b). The mechanical performance of polymer-modified cement pastes at early ages: Ultra-short non-aging compression tests and multiscale homogenization. Construction and Building Materials, 173, 495–507.CrossRefGoogle Scholar
  45. Grazia, T. (1999). Comportement Des Bétons Au Jeune Âge. Ph.D. thesis, Université Laval.Google Scholar
  46. He, Z., Zhou, X., & Li, Z. (2004). New experimental method for studying early-age cracking of cement-based materials. ACI Materials Journal, 101(1), 50–56.Google Scholar
  47. Hossain, A. B., & Weiss, J. (2004). Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cement and Concrete Composites, 26(5), 531–540.CrossRefGoogle Scholar
  48. Hossain, A. B., & Weiss, J. (2006). The role of specimen geometry and boundary conditions on stress development and cracking in the restrained ring test. Cement and Concrete Research, 36(1), 189–199.CrossRefGoogle Scholar
  49. Igarashi, S. I., Bentur, A., & Kovler, K. (2000). Autogenous shrinkage and induced restraining stresses in high-strength concretes. Cement and Concrete Research, 30(11), 1701–1707.CrossRefGoogle Scholar
  50. Irfan-ul-Hassan, M., Königsberger, M., Reihsner, R., Hellmich, C., & Pichler, B. (2017). How water-aggregate interactions affect concrete creep: Multiscale analysis. Journal of Nanomechanics and Micromechanics, 7(4).Google Scholar
  51. Irfan-ul-Hassan, M., Pichler, B., Reihsner, R., & Hellmich, Ch. (2016). Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long Quasi-Static tests. Cement and Concrete Research, 82, 36–49.CrossRefGoogle Scholar
  52. Jaafri, R., Samouh, H., Roziere, E., Alam, S. Y., Wisniewski, V., & Loukili, A. (2019). Experimental and numerical analysis of curling behavior of natural hydraulic lime—Cement based mortars. Cement and Concrete Research, 117, 1–15.CrossRefGoogle Scholar
  53. Ji, G. M., Kanstad, T., & Bjøntegaard, Ø. (2018). Calibration of material models against TSTM test for crack risk assessment of early-age concrete containing fly ash. Advances in Materials Science and Engineering, 9, 1–11.Google Scholar
  54. Kamen, A., Denarié, E., Sadouki, H., & Brühwiler, E. (2008). Thermo-mechanical response of UHPFRC at early age—Experimental study and numerical simulation. Cement and Concrete Research, 38(6), 822–831.CrossRefGoogle Scholar
  55. Kanavaris, F., Azenha, M., Soutsos, M., & Kovler, K. (2019). Assessment of behaviour and cracking susceptibility of cementitious systems under restrained conditions through ring tests: A critical review. Cement and Concrete Composites, 95, 137–153.CrossRefGoogle Scholar
  56. Karte, P., Hlobil, M., Reihsner, R., Dörner, W., Lahayne, O., Eberhardsteiner, J., et al. (2015). Unloading-based stiffness characterisation of cement pastes during the second, third and fourth day after production. Strain, 51(2), 156–169.CrossRefGoogle Scholar
  57. Khan, M.Y. (2018). The tensile material properties of plastic concrete and the influence on plastic cracking. Stellenbosch University.Google Scholar
  58. Khan, M. Y., Kolawole, J. T., Boshoff, W. P., & Combrinck, R. (2017). Influence of relaxation and cyclic loading on the tensile material properties of plastic concrete. In S. Staquet & D. G. Aggelis (Eds.) 2nd International RILEM/COST Conference on Early Age Cracking and Serviceability in Cement-based Materials and Structures (EAC2) (pp. 379–384). RILEM Publications S.A.R.L.Google Scholar
  59. Kishi, T., & Lin, Z. (2008). A tentative experimental evaluation on early-age creep. In Creep, shrinkage and durability mechanics of concrete and concrete structures (pp. 285–291).Google Scholar
  60. Klausen, A. B. E. (2016). Early age crack assessment of concrete structures: Experimental investigation of decisive parameters. NTNU.Google Scholar
  61. Klausen, A. E., Kanstad, T., & Bjøntegaard, Ø. (2015). Updated temperature-stress testing machine (TSTM): Introductory tests, calculations, verification, and investigation of variable fly ash content. In CONCREEP 2015: Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures—Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structure.Google Scholar
  62. Königsberger, M., Irfan-ul-Hassan, M., Pichler, B., & Hellmich, C. (2016). Downscaling based identification of nonaging power-law creep of cement hydrates. Journal of Engineering Mechanics, 142(12), 04016106.CrossRefGoogle Scholar
  63. Kovler, K. (1994). Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage. Materials and Structures, 27(6), 324–330.CrossRefGoogle Scholar
  64. Kovler, K., & Bentur, A. (2009). Cracking sensitivity of normal- and high-strength concrete.Google Scholar
  65. Kovler, K., Sikuler, J., & Bentur, A. (1993). Restrained shrinkage tests of fibre-reinforced concrete ring specimens: Effect of core thermal expansion. Materials and Structures, 26(4), 231–237.CrossRefGoogle Scholar
  66. Lohaus, L., Cotardo, D., Werner, M., Schaumann, P., & Kelma, S. (2015). Experimental and numerical investigations of grouted joints in monopiles subjected to early-age cycling. Journal of Ocean and Wind Energy, 2(4).Google Scholar
  67. Lokhorst, S. J. (1998). Deformational behaviour of concrete influenced by hydration related changes of the microstructure.Google Scholar
  68. Lura, P. (2003). Autogenous deformation and internal curing of concrete. Ph.D. thesis, Delft University of Technology.Google Scholar
  69. Melo Neto, A. A., Cincotto, M. A., & Repette, W. L. (2007). Desenvolvimento de Metodologia e Equipamento Para a Medida Da Retraçăo Restringida. Brazil.Google Scholar
  70. Paillere, A. M., Buil, M., & Serrano, J. J. (1989). Effect of fiber addition on the autogenous shrinkage of silica fume concrete. ACI Materials Journal, 86(2), 139–144.Google Scholar
  71. Pirskawetz, S., Weise, F., & Fontana, P. (2012). Analysis of early-age cracking of cementitious materials by combination of various non destructive testing methods. In 2nd International Conference on Microstructural-related Durability of Cementitious Composites (pp. 350–359).Google Scholar
  72. Rilem 42-CEA. (1981). Properties of set concrete at early ages state-of-the-art-report. Matériaux et Constructions, 14(6), 399–450.Google Scholar
  73. RILEM TC 119-TCE. (1997). Avoidance of thermal cracking in concrete at early ages—Recommendations. Materials and Structures, 30, 451–461.Google Scholar
  74. Schlicke, D., Matiašková, L. (2019). Advanced computational methods versus analytical and empirical solutions for determining restraint stresses in bottom-restrained walls. Journal of Advanced Concrete Technology, 17, 335–349.CrossRefGoogle Scholar
  75. Schlitter, J. L., Barrett, T., & Weiss, W. J. (2010a). Restrained shrinkage behavior due to combined autogenous and thermal effects in mortars containing super absorbent polymer (Sap). In International RILEM Conference on Use of Superabsorbent Polymers and Other New Additives in Concrete (August).Google Scholar
  76. Schlitter, J. L., Senter, A. H., Bentz, D. P., Nantung, T., & Weiss, W. J. (2010b). A dual concentric ring test for evaluating residual stress development due to restrained volume change. Journal of ASTM International, 7(9), 103118.CrossRefGoogle Scholar
  77. Schöppel, K., Plannerer, M., & Springenschmid, R. (1994). Determination of restraint stresses and of material properties during the hydration of concrete with temperature-stress testing machine. In RILEM Proceedings 25, Thermal Cracking in Concrete at Early Ages.Google Scholar
  78. Springenschmid, R., Breitenbücher, R., & Mangold, M. (1994). Development of the cracking frame and the temperature-stress testing machine. In RILEM Proceedings 25, Thermal Cracking in Concrete at Early Ages (pp. 137–144).Google Scholar
  79. Staquet, S., Azenha, M., Boulay, C., Delsaute, B., Carette, J., Granja, J., et al. (2014). Maturity testing through continuous measurement of E-modulus: An inter-laboratory and inter-technique study. In Proceedings of ECO-CRETE International Symposium on Sustainability (p. 8).Google Scholar
  80. Staquet, S., Delsaute, B., Fairbairn, E. M. R., Torrent, R., Knoppik, A., Ukrainczyk, N., et al. (2019). Mixture Proportioning for Crack Avoidance (vol. 27).Google Scholar
  81. Turcry, P. (2004). Retrait et Fissuration Des Bétons Autoplaçans : Influence de La Formulation. Université de Nante.Google Scholar
  82. Turner, K., Schlicke, D., & Tue, N. V. (2015). Restraint and crack width development during service life regarding hardening caused stresses. In Proceeding of the fib Symposium (pp. 1–8). Copenhagen, Denmark.Google Scholar
  83. Vaysburd, A. M., Emmons, P. H., Bissonnette, B., & Pigeon, M. (2001). Some aspects of evaluating cracking sensitivity of repair materials. In K. Kovler & A. Bentur (Eds.), RILEM Proceedings PRO 23 Early Age Cracking in Cementitious Systems—EAC’01 (pp. 169–185). RILEM Publications S.A.R.L.Google Scholar
  84. Weiss, J., Lura, P., Rajabipour, F., & Sant, G. (2008). Performance of shrinkage-reducing admixtures at different humidities and at early ages. ACI Materials Journal, 105(5), 478–486.Google Scholar
  85. Weiss, W. J., & Shah, S. P. (2002). Restrained shrinkage cracking: the role of shrinkage reducing admixtures and specimen geometry. Materials and Structures, 35(246), 85–91.CrossRefGoogle Scholar
  86. Weiss, J., Yang, W., & Shah, S. (2000). Influence of specimen size/geometry on shrinkage cracking of rings. Journal of Engineering Mechanics, 126(3), 233–242.CrossRefGoogle Scholar
  87. Yokoyama, K., Hiraishi, S., Kasai, Y., & Kishitani, K. (1994). Shrinkage and cracking of high-strength concrete and flowing concrete at early ages. In ACI Special Publication (vol. 148, pp. 243–258).Google Scholar
  88. Zhou, X., Dong, W., & Oladiran, O. (2014). Experimental and numerical assessment of restrained shrinkage cracking of concrete using elliptical ring specimens. Journal of Materials in Civil Engineering, 26(11), 04014087.CrossRefGoogle Scholar
  89. Zhou, J., Ye, G., Schlangen, E., & Van Breugel, K. (2006). Autogenous deformation of portland cement paste blended with blast furnace slag measured by mini-TSTM. In International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation (pp. 367–374, vol. C).Google Scholar
  90. Zhu, H., Li, Q., Hu, Y., & Ma, R. (2018). Double feedback control method for determining early-age restrained creep of concrete using a temperature stress testing machine. Materials, 11(7), 1079.Google Scholar
  91. Zhu, H., Li, Q., & Yu, H. (2017). Self-developed testing system for determining the temperature behavior of concrete. Materials, 10(4), 419.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Service BATir, LGCUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations