Advertisement

Bone Cement pp 69-88 | Cite as

Inductivity: Bioactive Agents

  • Hamid Reza RezaieEmail author
  • Mohammad Hossein Esnaashary
  • Masoud Karfarma
  • Andreas Öchsner
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In bone tissue engineering, besides osteoconductivity and productivity, inducing the cells surrounded implanted scaffold via bioactive agents is crucial. To apply this property to bone tissue engineering, researchers are inspired by natural events which are occurring during bone healing. In addition to the role of various cells involved in bone healing, some bioactive agents such as inflammatory, angiogenic, and osteogenic growth factor take part in the process and control the events. Based on this strategy, in this chapter, the bone healing process is discussed in the context of employing various bioactive agents, including growth factors, drugs, and nucleic acids. Furthermore, the incorporation methods of the agents into a scaffold are investigated. In the last part of this chapter, common challenges that deal with bone tissue engineering are addressed.

References

  1. 1.
    T. Albrektsson, C. Johansson, Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10, S96–S101 (2001).  https://doi.org/10.1007/s005860100282CrossRefGoogle Scholar
  2. 2.
    C. Laurencin, Y. Khan, S.F. El-Amin, Bone graft substitutes. Expert Rev. Med. Devices 3, 49–57 (2006).  https://doi.org/10.1586/17434440.3.1.49CrossRefGoogle Scholar
  3. 3.
    R.J. Miron, Y.F. Zhang, Osteoinduction: a review of old concepts with new standards. J. Dent. Res. 91, 736–744 (2012).  https://doi.org/10.1177/0022034511435260CrossRefGoogle Scholar
  4. 4.
    R. Chen, J. Wang, C. Liu, Biomaterials act as enhancers of growth factors in bone regeneration. Adv. Funct. Mater. 26, 8810–8823 (2016).  https://doi.org/10.1002/adfm.201603197CrossRefGoogle Scholar
  5. 5.
    T.N. Vo, F.K. Kasper, A.G. Mikos, Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv. Drug Deliv. Rev. 64, 1292–1309 (2012).  https://doi.org/10.1016/j.addr.2012.01.016CrossRefGoogle Scholar
  6. 6.
    P.S. Lienemann, M.P. Lutolf, M. Ehrbar, Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv. Drug Deliv. Rev. 64, 1078–1089 (2012).  https://doi.org/10.1016/j.addr.2012.03.010CrossRefGoogle Scholar
  7. 7.
    S. Qu, J. Weng, K. Duan, Y. Liu, Drug-loading calcium phosphate cements for medical applications. Dev. Appl. Calcium Phosphate Bone Cem., 299–332 (2018).  https://doi.org/10.1007/978-981-10-5975-9_7Google Scholar
  8. 8.
    S. Bose, S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8, 1401–1421 (2012).  https://doi.org/10.1016/j.actbio.2011.11.017CrossRefGoogle Scholar
  9. 9.
    E.M.M. Van Lieshout, V. Alt, Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence? Injury 47, S43–S46 (2016).  https://doi.org/10.1016/S0020-1383(16)30011-0CrossRefGoogle Scholar
  10. 10.
    D.H.R. Kempen, L.B. Creemers, J. Alblas, L. Lu, A.J. Verbout, M.J. Yaszemski, W.J.A. Dhert, Growth factor interactions in bone regeneration. Tissue Eng. Part B Rev. 16, 551–566 (2010).  https://doi.org/10.1089/ten.teb.2010.0176CrossRefGoogle Scholar
  11. 11.
    T. Kang, X. Hua, P. Liang, M. Rao, Q. Wang, C. Quan, C. Zhang, Q. Jiang, Synergistic reinforcement of polydopamine-coated hydroxyapatite and BMP2 biomimetic peptide on the bioactivity of PMMA-based cement. Compos. Sci. Technol. 123, 232–240 (2016).  https://doi.org/10.1016/j.compscitech.2016.01.002CrossRefGoogle Scholar
  12. 12.
    V. Devescovi, E. Leonardi, G. Ciapetti, E. Cenni, Growth factors in bone repair. Chir. Organi. Mov. 92, 161–168 (2008).  https://doi.org/10.1007/s12306-008-0064-1CrossRefGoogle Scholar
  13. 13.
    J. Zeng, J. Lin, G. Yao, K. Kong, X. Wang, Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells. J. Orthop. Surg. Res. 12, 102 (2017).  https://doi.org/10.1186/s13018-017-0598-8CrossRefGoogle Scholar
  14. 14.
    F. Gunnella, E. Kunisch, M. Bungartz, S. Maenz, V. Horbert, L. Xin, J. Mika, J. Borowski, S. Bischoff, H. Schubert, P. Hortschansky, A. Sachse, B. Illerhaus, J. Günster, J. Bossert, K.D. Jandt, F. Plöger, R.W. Kinne, O. Brinkmann, Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine J. 17, 1699–1711 (2017).  https://doi.org/10.1016/j.spinee.2017.06.005CrossRefGoogle Scholar
  15. 15.
    A.K. Teotia, A. Gupta, D.B. Raina, L. Lidgren, A. Kumar, Gelatin-modified bone substitute with bioactive molecules enhance cellular interactions and bone regeneration. ACS Appl. Mater. Interfaces. 8, 10775–10787 (2016).  https://doi.org/10.1021/acsami.6b02145CrossRefGoogle Scholar
  16. 16.
    G.H. Lee, P. Makkar, K. Paul, B. Lee, Incorporation of BMP-2 loaded collagen conjugated BCP granules in calcium phosphate cement based injectable bone substitutes for improved bone regeneration. Mater. Sci. Eng., C 77, 713–724 (2017).  https://doi.org/10.1016/j.msec.2017.03.296CrossRefGoogle Scholar
  17. 17.
    S. Ding, J. Zhang, Y. Tian, B. Huang, Y. Yuan, C. Liu, Magnesium modification up-regulates the bioactivity of bone morphogenetic protein-2 upon calcium phosphate cement via enhanced BMP receptor recognition and Smad signaling pathway. Colloids Surf. B Biointerfaces 145, 140–151 (2016).  https://doi.org/10.1016/j.colsurfb.2016.04.045ADSCrossRefGoogle Scholar
  18. 18.
    B. Huang, Y. Tian, W. Zhang, Y. Ma, Y. Yuan, C. Liu, Strontium doping promotes bioactivity of rhBMP-2 upon calcium phosphate cement via elevated recognition and expression of BMPR-IA. Colloids Surf. B Biointerfaces 159, 684–695 (2017).  https://doi.org/10.1016/j.colsurfb.2017.06.041CrossRefGoogle Scholar
  19. 19.
    B. Huang, Z. Wu, S. Ding, Y. Yuan, C. Liu, Localization and promotion of recombinant human bone morphogenetic protein-2 bioactivity on extracellular matrix mimetic chondroitin sulfate-functionalized calcium phosphate cement scaffolds. Acta Biomater. 71, 184–199 (2018).  https://doi.org/10.1016/j.actbio.2018.01.004CrossRefGoogle Scholar
  20. 20.
    R. Liu, X. Wu, J. Li, X. Liu, Z. Huang, Y. Yuan, X. Gao, B. Lin, B. Yu, Y. Chen, The promotion of bone tissue regeneration by BMP2-derived peptide P24-loaded calcium phosphate cement microspheres. Ceram. Int. 42, 3177–3189 (2016).  https://doi.org/10.1016/j.ceramint.2015.10.108CrossRefGoogle Scholar
  21. 21.
    J. Baek, H.-D. Jung, T.-S. Jang, S.W. Kim, M.-H. Kang, H.-E. Kim, Y.-H. Koh, Synthesis and evaluation of bone morphogenetic protein (BMP)-loaded hydroxyapatite microspheres for enhanced bone regeneration. Ceram. Int. 42, 7748–7756 (2016).  https://doi.org/10.1016/j.ceramint.2016.01.189CrossRefGoogle Scholar
  22. 22.
    J.C. da Silva de Oliveira, E.R. Luvizuto, C.K. Sonoda, R. Okamoto, I.R. Garcia-Junior, Immunohistochemistry evaluation of BMP-2 with β-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in rats. Oral Maxillofac. Surg. 21, 247–258 (2017).  https://doi.org/10.1007/s10006-017-0624-3CrossRefGoogle Scholar
  23. 23.
    R.O. Huse, P. Quinten Ruhe, J.G.C. Wolke, J.A. Jansen, The use of porous calcium phosphate scaffolds with transforming growth factor beta 1 as an onlay bone graft substitute. An experimental study in rats. Clin. Oral Implants Res. 15, 741–749 (2004).  https://doi.org/10.1111/j.1600-0501.2004.01068.xCrossRefGoogle Scholar
  24. 24.
    A. Plachokova, D. Link, J. van den Dolder, J. van den Beucken, J. Jansen, Bone regenerative properties of injectable PGLA–CaP composite with TGF-β1 in a rat augmentation model. J. Tissue Eng. Regen. Med. 1, 457–464 (2007).  https://doi.org/10.1002/term.59CrossRefGoogle Scholar
  25. 25.
    D.P. Link, J. van den Dolder, J.J. van den Beucken, J.G. Wolke, A.G. Mikos, J.A. Jansen, Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1 loaded gelatin microparticles. Biomaterials 29, 675–682 (2008).  https://doi.org/10.1016/j.biomaterials.2007.10.029CrossRefGoogle Scholar
  26. 26.
    S.-H. Lee, H. Shin, Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv. Drug Deliv. Rev. 59, 339–359 (2007).  https://doi.org/10.1016/j.addr.2007.03.016CrossRefGoogle Scholar
  27. 27.
    D.A. Oortgiesen, X.F. Walboomers, A.L. Bronckers, G.J. Meijer, J.A. Jansen, Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2. J. Tissue Eng. Regen. Med. 8, 202–209 (2014).  https://doi.org/10.1002/term.1514CrossRefGoogle Scholar
  28. 28.
    R. Tsuboi, J.-I. Sasaki, H. Kitagawa, I. Yoshimoto, F. Takeshige, S. Imazato, Development of a novel dental resin cement incorporating FGF-2-loaded polymer particles with the ability to promote tissue regeneration. Dent. Mater. 34, 641–648 (2018).  https://doi.org/10.1016/j.dental.2018.01.007CrossRefGoogle Scholar
  29. 29.
    S. Vahabzadeh, A. Bandyopadhyay, S. Bose, R. Mandal, S.K. Nandi, IGF-loaded silicon and zinc doped brushite cement: physico-mechanical characterization and in vivo osteogenesis evaluation. Integr. Biol. 7, 1561–1573 (2015).  https://doi.org/10.1039/c5ib00114eCrossRefGoogle Scholar
  30. 30.
    A. Lode, C. Wolf-Brandstetter, A. Reinstorf, A. Bernhardt, U. König, W. Pompe, M. Gelinsky, Calcium phosphate bone cements, functionalized with VEGF: release kinetics and biological activity. J. Biomed. Mater. Res., Part A 81A, 474–483 (2007).  https://doi.org/10.1002/jbm.a.31024CrossRefGoogle Scholar
  31. 31.
    A. Lode, A. Reinstorf, A. Bernhardt, C. Wolf-Brandstetter, U. König, M. Gelinsky, Heparin modification of calcium phosphate bone cements for VEGF functionalization. J. Biomed. Mater. Res., Part A 86A, 749–759 (2008).  https://doi.org/10.1002/jbm.a.31581CrossRefGoogle Scholar
  32. 32.
    A.R. Akkineni, Y. Luo, M. Schumacher, B. Nies, A. Lode, M. Gelinsky, 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 27, 264–274 (2015).  https://doi.org/10.1016/j.actbio.2015.08.036CrossRefGoogle Scholar
  33. 33.
    T. Ahlfeld, A.R. Akkineni, Y. Förster, T. Köhler, S. Knaack, M. Gelinsky, A. Lode, Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel. Ann. Biomed. Eng. 45, 224–236 (2017).  https://doi.org/10.1007/s10439-016-1685-4CrossRefGoogle Scholar
  34. 34.
    T. Ahlfeld, F.P. Schuster, Y. Förster, M. Quade, A.R. Akkineni, C. Rentsch, S. Rammelt, M. Gelinsky, A. Lode, 3D plotted biphasic bone scaffolds for growth factor delivery: biological characterization in vitro and in vivo. Adv. Healthc. Mater. 8, 1801512 (2019).  https://doi.org/10.1002/adhm.201801512CrossRefGoogle Scholar
  35. 35.
    M. Mehta, K. Schmidt-Bleek, G.N. Duda, D.J. Mooney, Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Deliv. Rev. 64, 1257–1276 (2012).  https://doi.org/10.1016/j.addr.2012.05.006CrossRefGoogle Scholar
  36. 36.
    J.A. Jansen, J.W.M. Vehof, P.Q. Ruhé, H. Kroeze-Deutman, Y. Kuboki, H. Takita, E.L. Hedberg, A.G. Mikos, Growth factor-loaded scaffolds for bone engineering. J. Control. Release 101, 127–136 (2005).  https://doi.org/10.1016/j.jconrel.2004.07.005CrossRefGoogle Scholar
  37. 37.
    E.A. Bayer, J. Jordan, A. Roy, R. Gottardi, M.V. Fedorchak, P.N. Kumta, S.R. Little, Programmed platelet-derived growth factor-BB and bone morphogenetic protein-2 delivery from a hybrid calcium phosphate/alginate scaffold. Tissue Eng. Part A 23, 1382–1393 (2017).  https://doi.org/10.1089/ten.tea.2017.0027CrossRefGoogle Scholar
  38. 38.
    R. Reyes, B. De la Riva, A. Delgado, A. Hernández, E. Sánchez, C. Évora, Effect of triple growth factor controlled delivery by a brushite–PLGA system on a bone defect. Injury 43, 334–342 (2012).  https://doi.org/10.1016/j.injury.2011.10.008CrossRefGoogle Scholar
  39. 39.
    R.P.F. Lanao, J.W.M. Hoekstra, J.G.C. Wolke, S.C.G. Leeuwenburgh, A.S. Plachokova, O.C. Boerman, J.J.J.P. van den Beucken, J.A. Jansen, Bone regenerative properties of injectable calcium phosphate/PLGA cement in an alveolar bone defect. Key Eng. Mater. 529–530, 300–303 (2012).  https://doi.org/10.4028/www.scientific.net/KEM.529-530.300CrossRefGoogle Scholar
  40. 40.
    R.P. Félix Lanao, J.W.M. Hoekstra, J.G.C. Wolke, S.C.G. Leeuwenburgh, A.S. Plachokova, O.C. Boerman, J.J.J.P. van den Beucken, J.A. Jansen, Porous calcium phosphate cement for alveolar bone regeneration. J. Tissue Eng. Regen. Med. 8, 473–482 (2014).  https://doi.org/10.1002/term.1546CrossRefGoogle Scholar
  41. 41.
    Y.-C. Chiang, H.-H. Chang, C.-C. Wong, Y.-P. Wang, Y.-L. Wang, W.-H. Huang, C.-P. Lin, Nanocrystalline calcium sulfate/hydroxyapatite biphasic compound as a TGF-β1/VEGF reservoir for vital pulp therapy. Dent. Mater. 32, 1197–1208 (2016).  https://doi.org/10.1016/j.dental.2016.06.013CrossRefGoogle Scholar
  42. 42.
    K. Lee, M.D. Weir, E. Lippens, M. Mehta, P. Wang, G.N. Duda, W.S. Kim, D.J. Mooney, H.H.K. Xu, Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats. Dent. Mater. 30, e199–e207 (2014).  https://doi.org/10.1016/j.dental.2014.03.008CrossRefGoogle Scholar
  43. 43.
    M.-P. Ginebra, C. Canal, M. Espanol, D. Pastorino, E.B. Montufar, Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 64, 1090–1110 (2012).  https://doi.org/10.1016/j.addr.2012.01.008CrossRefGoogle Scholar
  44. 44.
    M.-P. Ginebra, T. Traykova, J.A. Planell, Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials 27, 2171–2177 (2006).  https://doi.org/10.1016/j.biomaterials.2005.11.023CrossRefGoogle Scholar
  45. 45.
    V. Mouriño, A.R. Boccaccini, Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J. R. Soc. Interface 7, 209–227 (2010).  https://doi.org/10.1098/rsif.2009.0379CrossRefGoogle Scholar
  46. 46.
    A. Shuid, N. Ibrahim, M. Amin, I. Mohamed, Drug delivery systems for prevention and treatment of osteoporotic fracture. Curr. Drug Targets 14, 1558–1564 (2013).  https://doi.org/10.2174/1389450114666131108153905CrossRefGoogle Scholar
  47. 47.
    R.M. Raftery, D.P. Walsh, I.M. Castaño, A. Heise, G.P. Duffy, S.-A. Cryan, F.J. O’Brien, Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives. Adv. Mater. 28, 5447–5469 (2016).  https://doi.org/10.1002/adma.201505088CrossRefGoogle Scholar
  48. 48.
    Y. Zhang, W. Ma, Y. Zhan, C. Mao, X. Shao, X. Xie, X. Wei, Y. Lin, Nucleic acids and analogs for bone regeneration. Bone Res. 6, 37 (2018).  https://doi.org/10.1038/s41413-018-0042-7CrossRefGoogle Scholar
  49. 49.
    E.R. Balmayor, C.H. Evans, RNA therapeutics for tissue engineering. Tissue Eng. Part A 25, 9–11 (2019).  https://doi.org/10.1089/ten.tea.2018.0315CrossRefGoogle Scholar
  50. 50.
    A. Ho-Shui-Ling, J. Bolander, L.E. Rustom, A.W. Johnson, F.P. Luyten, C. Picart, Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180, 143–162 (2018).  https://doi.org/10.1016/j.biomaterials.2018.07.017CrossRefGoogle Scholar
  51. 51.
    V. Martin, A. Bettencourt, Bone regeneration: biomaterials as local delivery systems with improved osteoinductive properties. Mater. Sci. Eng., C 82, 363–371 (2018).  https://doi.org/10.1016/j.msec.2017.04.038CrossRefGoogle Scholar
  52. 52.
    P.S. Babo, V.E. Santo, M.E. Gomes, R.L. Reis, Development of an injectable calcium phosphate/hyaluronic acid microparticles system for platelet lysate sustained delivery aiming bone regeneration. Macromol. Biosci. 16, 1662–1677 (2016).  https://doi.org/10.1002/mabi.201600141CrossRefGoogle Scholar
  53. 53.
    E. Nyberg, C. Holmes, T. Witham, W.L. Grayson, Growth factor-eluting technologies for bone tissue engineering. Drug Deliv. Transl. Res. 6, 184–194 (2016).  https://doi.org/10.1007/s13346-015-0233-3CrossRefGoogle Scholar
  54. 54.
    V. Luginbuehl, L. Meinel, H.P. Merkle, B. Gander, Localized delivery of growth factors for bone repair. Eur. J. Pharm. Biopharm. 58, 197–208 (2004).  https://doi.org/10.1016/j.ejpb.2004.03.004CrossRefGoogle Scholar
  55. 55.
    L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, B. Grigolo, Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater. Sci. Eng., C 78, 1246–1262 (2017).  https://doi.org/10.1016/j.msec.2017.05.017CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hamid Reza Rezaie
    • 1
    Email author
  • Mohammad Hossein Esnaashary
    • 1
  • Masoud Karfarma
    • 1
  • Andreas Öchsner
    • 2
  1. 1.Ceramic and Biomaterial Division, Department of Engineering MaterialsIran University of Science and TechnologyTehranIran
  2. 2.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingen am NeckarGermany

Personalised recommendations