Advertisement

Bone Cement pp 19-41 | Cite as

Conductivity: Materials Design

  • Hamid Reza RezaieEmail author
  • Mohammad Hossein Esnaashary
  • Masoud Karfarma
  • Andreas Öchsner
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Natural bone tissue constructs from various components and structural features. To produce a bone substitution that can conduct and induce bone growth on its structure and gradually replace the substitution with newly grown tissue, the composition and structure of the substitution should be mimic the natural tissue components. In this order, composition and porous structure of bone have been considered in the synthesis of bone cement. In this chapter, at first structural and compositional features of bone tissue are evaluated. Moreover, based on this knowledge, selecting the bone cement composition and applying scaffold production method on them are studied.

References

  1. 1.
    T. Nakamura, M. Takemoto, Osteoconduction and its evaluation, in Bioceramics and Their Clinical Applications, ed. by T. Kokubo (CRC Press, Cambridge, 2008), pp. 183–198CrossRefGoogle Scholar
  2. 2.
    M.M. Stevens, Biomaterials for bone tissue engineering. Mater. Today 11, 18–25 (2008).  https://doi.org/10.1016/S1369-7021(08)70086-5CrossRefGoogle Scholar
  3. 3.
    U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).  https://doi.org/10.1038/nmat4089ADSCrossRefGoogle Scholar
  4. 4.
    A. Shekaran, A.J. García, Extracellular matrix-mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res.—Part A 96(1), 261–272 (2011).  https://doi.org/10.1002/jbm.a.32979CrossRefGoogle Scholar
  5. 5.
    R.I. Freshney, Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th edn. (Wiley, Hoboken, 2010)CrossRefGoogle Scholar
  6. 6.
    G. Karp, Cell and Molecular Biology: Concepts and Experiments, 7th edn. (Wiley, Danvers, 2013)Google Scholar
  7. 7.
    R. Vaishya, M. Chauhan, A. Vaish, Bone cement. J. Clin. Orthop. Trauma 4, 157–163 (2013).  https://doi.org/10.1016/j.jcot.2013.11.005CrossRefGoogle Scholar
  8. 8.
    C. Duval-Terrié, L. Lebrun, Polymerization and characterization of PMMA. Polymer chemistry laboratory experiments for undergraduate students. J. Chem. Educ. 83, 443 (2006).  https://doi.org/10.1021/ed083p443ADSCrossRefGoogle Scholar
  9. 9.
    J. Hasenwinkel, Bone cement, in Encyclopedia of Biomaterials and Biomedical Engineering, 2nd edn., ed. by G.E. Wnek, G.L. Bowlin (Informa Healthcare, New YorK, 2008), pp. 403–412Google Scholar
  10. 10.
    G. Lewis, Properties of acrylic bone cement: state of the art review. J. Biomed. Mater. Res. 38, 155–182 (1997).  https://doi.org/10.1002/(SICI)1097-4636(199722)38:2%3c155:AID-JBM10%3e3.0.CO;2-CCrossRefGoogle Scholar
  11. 11.
    L. Hernández, M. Gurruchaga, I. Goñi, Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behaviour. J. Mater. Sci. Mater. Med. 20, 89–97 (2009).  https://doi.org/10.1007/s10856-008-3542-yCrossRefGoogle Scholar
  12. 12.
    Y. Wang, Y. Xiao, X. Huang, M. Lang, Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP. J. Colloid Interface Sci. 360, 415–421 (2011).  https://doi.org/10.1016/j.jcis.2011.04.093ADSCrossRefGoogle Scholar
  13. 13.
    L. Chen, D. Zhai, Z. Huan, N. Ma, H. Zhu, C. Wu, J. Chang, Silicate bioceramic/PMMA composite bone cement with distinctive physicochemical and bioactive properties. RSC Adv. 5, 37314–37322 (2015).  https://doi.org/10.1039/C5RA04646GCrossRefGoogle Scholar
  14. 14.
    B. Marrs, R. Andrews, T. Rantell, D. Pienkowski, Augmentation of acrylic bone cement with multiwall carbon nanotubes. J. Biomed. Mater. Res., Part A 77A, 269–276 (2006).  https://doi.org/10.1002/jbm.a.30651CrossRefGoogle Scholar
  15. 15.
    K. Król, K. Pielichowska, Modification of acrylic bone cements by poly(ethylene glycol) with different molecular weight. Polym. Adv. Technol. 27, 1284–1293 (2016).  https://doi.org/10.1002/pat.3792CrossRefGoogle Scholar
  16. 16.
    Z. He, Q. Zhai, M. Hu, C. Cao, J. Wang, H. Yang, B. Li, Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: current status and future developments. J. Orthop. Transl. 3, 1–11 (2015).  https://doi.org/10.1016/j.jot.2014.11.002CrossRefGoogle Scholar
  17. 17.
    M. Salarian, W.Z. Xu, M.C. Biesinger, P.A. Charpentier, Synthesis and characterization of novel TiO 2 -poly(propylene fumarate) nanocomposites for bone cementation. J. Mater. Chem. B 2, 5145–5156 (2014).  https://doi.org/10.1039/C4TB00715HCrossRefGoogle Scholar
  18. 18.
    E.L.S. Fong, B.M. Watson, F.K. Kasper, A.G. Mikos, Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. Adv. Mater. 24, 4995–5013 (2012).  https://doi.org/10.1002/adma.201201762CrossRefGoogle Scholar
  19. 19.
    S.J. Peter, P. Kim, A.W. Yasko, M.J. Yaszemski, A.G. Mikos, Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J. Biomed. Mater. Res. 44, 314–321 (1999)CrossRefGoogle Scholar
  20. 20.
    N.S. Anitha, V. Thomas, M. Jayabalan, Poly(propylene fumarate)ln-vinyl pyrrolidone copolymer-based bone cement: setting and in-vitro biodegradation. J. Indian Inst. Sci. 79, 431–442 (1999)Google Scholar
  21. 21.
    S. He, M.J. Yaszemski, A.W. Yasko, P.S. Engel, A.G. Mikos, Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 21, 2389–2394 (2000).  https://doi.org/10.1016/S0142-9612(00)00106-XCrossRefGoogle Scholar
  22. 22.
    J.P. Fisher, D. Dean, A.G. Mikos, Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 23, 4333–4343 (2002)CrossRefGoogle Scholar
  23. 23.
    D. Hakimimehr, D.-M. Liu, T. Troczynski, In-situ preparation of poly(propylene fumarate)–hydroxyapatite composite. Biomaterials 26, 7297–7303 (2005).  https://doi.org/10.1016/j.biomaterials.2005.05.065CrossRefGoogle Scholar
  24. 24.
    X. Shi, B. Sitharaman, Q.P. Pham, F. Liang, K. Wu, W.E. Billups, L.J. Wilson, A.G. Mikos, Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28, 4078–4090 (2007).  https://doi.org/10.1016/j.biomaterials.2007.05.033CrossRefGoogle Scholar
  25. 25.
    B. Sitharaman, X. Shi, X.F. Walboomers, H. Liao, V. Cuijpers, L.J. Wilson, A.G. Mikos, J.A. Jansen, In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43, 362–370 (2008).  https://doi.org/10.1016/j.bone.2008.04.013CrossRefGoogle Scholar
  26. 26.
    E. Fernandez, F.J. Gil, M.P. Ginebra, F.C.M. Driessens, J.A. Planell, S.M. Best, Calcium phosphate bone cements for clinical applications. Part II: Precipitate formation during setting reactions. J. Mater. Sci. Mater. Med. 10, 177–183 (1999).  https://doi.org/10.1023/A:1008989525461CrossRefGoogle Scholar
  27. 27.
    M. Ginebra, E. Fernandez, F.C.M. Driessens, J.A. Planell, Modeling of the hydrolysis of a-tricalcium phosphate. J. Am. Ceram. Soc. 82, 2808–2812 (1999)CrossRefGoogle Scholar
  28. 28.
    A. Ewald, K. Helmschrott, G. Knebl, N. Mehrban, L.M. Grover, U. Gbureck, Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. J. Biomed. Mater. Res. B Appl. Biomater. 96, 326–332 (2011).  https://doi.org/10.1002/jbm.b.31771CrossRefGoogle Scholar
  29. 29.
    C. Großardt, A. Ewald, L.M. Grover, J.E. Barralet, U. Gbureck, Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells. Tissue Eng. Part A 16, 3687–3695 (2010).  https://doi.org/10.1089/ten.tea.2010.0281CrossRefGoogle Scholar
  30. 30.
    U. Klammert, A. Ignatius, U. Wolfram, T. Reuther, U. Gbureck, In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Acta Biomater. 7, 3469–3475 (2011).  https://doi.org/10.1016/j.actbio.2011.05.022CrossRefGoogle Scholar
  31. 31.
    F. Tamimi, Z. Sheikh, J. Barralet, Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 8, 474–487 (2012).  https://doi.org/10.1016/j.actbio.2011.08.005CrossRefGoogle Scholar
  32. 32.
    K.L. Low, S.H. Tan, S.H.S. Zein, J.A. Roether, V. Mouriño, A.R. Boccaccini, Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. B Appl. Biomater. 94, 273–286 (2010).  https://doi.org/10.1002/jbm.b.31619CrossRefGoogle Scholar
  33. 33.
    D.L. Alge, W.S. Goebel, T.-M.G. Chu, Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations. Biomed. Mater. 8, 025010 (2013).  https://doi.org/10.1088/1748-6041/8/2/025010ADSCrossRefGoogle Scholar
  34. 34.
    F. Chen, C. Liu, J. Wei, X. Chen, Physicochemical properties and biocompatibility of white dextrin modified injectable calcium-magnesium phosphate cement. Int. J. Appl. Ceram. Technol. 9, 979–990 (2012).  https://doi.org/10.1111/j.1744-7402.2011.02705.xCrossRefGoogle Scholar
  35. 35.
    G. Mestres, M.-P. Ginebra, Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 7, 1853–1861 (2011).  https://doi.org/10.1016/j.actbio.2010.12.008CrossRefGoogle Scholar
  36. 36.
    C. Moseke, V. Saratsis, U. Gbureck, Injectability and mechanical properties of magnesium phosphate cements. J. Mater. Sci. Mater. Med. 22, 2591–2598 (2011).  https://doi.org/10.1007/s10856-011-4442-0CrossRefGoogle Scholar
  37. 37.
    M. Nabiyouni, T. Brückner, H. Zhou, U. Gbureck, S.B. Bhaduri, Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 66, 23–43 (2017).  https://doi.org/10.1016/j.actbio.2017.11.033CrossRefGoogle Scholar
  38. 38.
    N. Ostrowski, A. Roy, P.N. Kumta, Magnesium phosphate cement systems for hard tissue applications: a review. ACS Biomater. Sci. Eng. 2, 1067–1083 (2016).  https://doi.org/10.1021/acsbiomaterials.6b00056CrossRefGoogle Scholar
  39. 39.
    A. Ewald, K. Helmschrott, G. Knebl, N. Mehrban, L.M. Grover, U. Gbureck, Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. J. Biomed. Mater. Res.—Part B Appl. Biomater. 96B, 326–332 (2011).  https://doi.org/10.1002/jbm.b.31771CrossRefGoogle Scholar
  40. 40.
    U. Klammert, T. Reuther, M. Blank, I. Reske, J.E. Barralet, L.M. Grover, A.C. Kübler, U. Gbureck, Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomater. 6, 1529–1535 (2010).  https://doi.org/10.1016/j.actbio.2009.10.021CrossRefGoogle Scholar
  41. 41.
    S.M. Kenny, M. Buggy, Bone cements and fillers: a review. J. Mater. Sci. Mater. Med. 14, 923–938 (2003).  https://doi.org/10.1023/A:1026394530192CrossRefGoogle Scholar
  42. 42.
    Q.-Z. Chen, A.R. Boccaccini, Bioactive materials and scaffolds for tissue engineering, in Encyclopedia of Biomaterials and Biomedical Engineering, 2nd edn., ed. by G.E. Wnek, G.I. Bowlin (Informa Healthcare, New YorK, 2008), pp. 142–151Google Scholar
  43. 43.
    E.D. Boland, P.G. Espy, G.L. Bowlin, Tissue engineering scaffolds, in Encyclopedia of Biomaterials and Biomedical Engineering, 2nd edn., ed. by G.E. Wnek, G.I. Bowlin (Informa Healthcare, New YorK, 2008), pp. 2828–2837Google Scholar
  44. 44.
    T. Garg, O. Singh, S. Arora, R. Murthy, Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 29, 1–63 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Shi, J.D. Kretlow, P.P. Spicer, Y. Tabata, N. Demian, M.E. Wong, F.K. Kasper, A.G. Mikos, Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J. Control Release 152, 196–205 (2011).  https://doi.org/10.1016/j.jconrel.2011.01.029CrossRefGoogle Scholar
  46. 46.
    H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A.P. Tomsia, R.O. Ritchie, Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28, 50–56 (2016).  https://doi.org/10.1002/adma.201504313CrossRefGoogle Scholar
  47. 47.
    G. Radha, S. Balakumar, B. Venkatesan, E. Vellaichamy, A novel nano-hydroxyapatite—PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: analysis of its mechanical and biological properties. Mater. Sci. Eng. C 75, 221–228 (2017).  https://doi.org/10.1016/j.msec.2016.12.133CrossRefGoogle Scholar
  48. 48.
    A.M. Henslee, S.R. Shah, M.E. Wong, A.G. Mikos, F.K. Kasper, Degradable, antibiotic releasing poly(propylene fumarate)-based constructs for craniofacial space maintenance applications. J. Biomed. Mater. Res., Part A 103, 1485–1497 (2015).  https://doi.org/10.1002/jbm.a.35288CrossRefGoogle Scholar
  49. 49.
    C.W. Kim, R. Talac, L. Lu, M.J. Moore, B.L. Currier, M.J. Yaszemski, Characterization of porous injectable poly-(propylene fumarate)-based bone graft substitute. J. Biomed. Mater. Res., Part A 85A, 1114–1119 (2008).  https://doi.org/10.1002/jbm.a.31633CrossRefGoogle Scholar
  50. 50.
    J.P. Fisher, T.A. Holland, D. Dean, P.S. Engel, A.G. Mikos, Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J. Biomater. Sci. Polym. Ed. 12, 673–687 (2001).  https://doi.org/10.1163/156856201316883476CrossRefGoogle Scholar
  51. 51.
    S. Hesaraki, F. Moztarzadeh, D. Sharifi, Formation of interconnected macropores in apatitic calcium phosphate bone cement with the use of an effervescent additive. J. Biomed. Mater. Res., Part A 83A, 80–87 (2007).  https://doi.org/10.1002/jbm.a.31196CrossRefGoogle Scholar
  52. 52.
    W. Chen, H. Zhou, M. Tang, M.D. Weir, C. Bao, H.H.K. Xu, Gas-foaming calcium phosphate cement scaffold encapsulating human umbilical cord stem cells. Tissue Eng. Part A 18, 816–827 (2012).  https://doi.org/10.1089/ten.tea.2011.0267CrossRefGoogle Scholar
  53. 53.
    L.A. Vasconcellos, L.A. dos Santos, Calcium phosphate cement scaffolds with PLGA fibers. Mater. Sci. Eng., C 33, 1032–1040 (2013).  https://doi.org/10.1016/j.msec.2012.10.019CrossRefGoogle Scholar
  54. 54.
    A. Lode, K. Meissner, Y. Luo, F. Sonntag, S. Glorius, B. Nies, C. Vater, F. Despang, T. Hanke, M. Gelinsky, Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J. Tissue Eng. Regen. Med. 8, 682–693 (2014).  https://doi.org/10.1002/term.1563CrossRefGoogle Scholar
  55. 55.
    A.R. Akkineni, Y. Luo, M. Schumacher, B. Nies, A. Lode, M. Gelinsky, 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 27, 264–274 (2015).  https://doi.org/10.1016/j.actbio.2015.08.036CrossRefGoogle Scholar
  56. 56.
    T. Liu, J. Li, Z. Shao, K. Ma, Z. Zhang, B. Wang, Y. Zhang, Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med. Eng. Phys. 56, 9–15 (2018).  https://doi.org/10.1016/j.medengphy.2018.03.003CrossRefGoogle Scholar
  57. 57.
    T. Bian, K. Zhao, Q. Meng, H. Jiao, Y. Tang, J. Luo, Fabrication and performance of calcium phosphate cement/small intestinal submucosa composite bionic bone scaffolds with different microstructures. Ceram. Int. 44, 9181–9187 (2018).  https://doi.org/10.1016/j.ceramint.2018.02.127CrossRefGoogle Scholar
  58. 58.
    E.B. Montufar, T. Traykova, C. Gil, I. Harr, A. Almirall, A. Aguirre, E. Engel, J.A. Planell, M.P. Ginebra, Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater. 6, 876–885 (2010).  https://doi.org/10.1016/j.actbio.2009.10.018CrossRefGoogle Scholar
  59. 59.
    E.B. Montufar, T. Traykova, E. Schacht, L. Ambrosio, M. Santin, J.A. Planell, M.-P. Ginebra, Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration. J. Mater. Sci. Mater. Med. 21, 863–869 (2010).  https://doi.org/10.1007/s10856-009-3918-7CrossRefGoogle Scholar
  60. 60.
    D.L. Alge, J. Bennett, T. Treasure, S. Voytik-Harbin, W.S. Goebel, T.-M.G. Chu, Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J. Biomed. Mater. Res. A 100, 1792–1802 (2012).  https://doi.org/10.1002/jbm.a.34130CrossRefGoogle Scholar
  61. 61.
    S. Meininger, C. Moseke, K. Spatz, E. März, C. Blum, A. Ewald, E. Vorndran, Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. Mater. Sci. Eng., C 98, 1145–1158 (2019).  https://doi.org/10.1016/j.msec.2019.01.053CrossRefGoogle Scholar
  62. 62.
    S. Meininger, S. Mandal, A. Kumar, J. Groll, B. Basu, U. Gbureck, Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomater. 31, 401–411 (2016).  https://doi.org/10.1016/j.actbio.2015.11.050CrossRefGoogle Scholar
  63. 63.
    J. Lee, M.M. Farag, E.K. Park, J. Lim, H. Yun, A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration. Mater. Sci. Eng., C 36, 252–260 (2014).  https://doi.org/10.1016/j.msec.2013.12.007CrossRefGoogle Scholar
  64. 64.
    J.A. Kim, H. Yun, Y.-A. Choi, J.-E. Kim, S.-Y. Choi, T.-G. Kwon, Y.K. Kim, T.-Y. Kwon, M.A. Bae, N.J. Kim, Y.C. Bae, H.-I. Shin, E.K. Park, Magnesium phosphate ceramics incorporating a novel indene compound promote osteoblast differentiation in vitro and bone regeneration in vivo. Biomaterials 157, 51–61 (2018).  https://doi.org/10.1016/j.biomaterials.2017.11.032CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hamid Reza Rezaie
    • 1
    Email author
  • Mohammad Hossein Esnaashary
    • 1
  • Masoud Karfarma
    • 1
  • Andreas Öchsner
    • 2
  1. 1.Ceramic and Biomaterial Division, Department of Engineering MaterialsIran University of Science and TechnologyTehranIran
  2. 2.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingen am NeckarGermany

Personalised recommendations