Advertisement

Cement Concept

  • Hamid Reza RezaieEmail author
  • Mohammad Hossein Esnaashary
  • Masoud Karfarma
  • Andreas Öchsner
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Bone cements as a typical kind of materials have been applied in many surgical procedures, such as augmentation of orthopedic implants, and filling of bone defects in the cranio-maxillofacial region or vertebral column. The cement has a long story, beyond its medical applications. Hence, to get familiar with the story, in this chapter, at first the general history of cement, since ancient time, is reviewed. Then, the application of cement in medical surgery, outstanding features of the cement, and effective parameters on these features are considered. Finally, advances in bone cement applications by combing with tissue engineering strategy are introduced.

References

  1. 1.
    R.G. Blezard, The history of calcareous cements, in Lea’s Chemistry of Cement and Concrete, ed. by P. Hewlett, 4th edn. (Butterworth-Heinemann, Oxford, 2004), pp. 1–23Google Scholar
  2. 2.
  3. 3.
    J.H. Sharp, Surely we know all about cement—don’t we? Adv. Appl. Ceram. 105, 162–174 (2006).  https://doi.org/10.1179/174367606X115904CrossRefGoogle Scholar
  4. 4.
    M.M. Masoumi, H. Banakar, B. Boroomand, Review of an ancient persian lime mortar “Sarooj”. Malaysian J. Civ. Eng. 27, 94–109 (2015).  https://doi.org/10.11113/mjce.v27n1.361CrossRefGoogle Scholar
  5. 5.
    R. Eires, A. Camões, S. Jalali, Earth architecture: ancient and new methods for durability improvement, in Structures and Architecture: New Concepts, Applications and Challenges, ed. by P.J. Cruz (CRC Press, London, 2013), pp. 962–970CrossRefGoogle Scholar
  6. 6.
    No Title. https://en.wikipedia.org/wiki/Sarooj. Accessed 25 Sept 2019
  7. 7.
    F. Chen, X. Ma, Y. Yu, C. Liu, Calcium phosphate bone cements: their development and clinical applications, in Developments and Applications of Calcium Phosphate Bone Cements, ed. by C. Liu, H. He (Springer, Singapore, 2018), pp. 1–39Google Scholar
  8. 8.
    R. Vaishya, M. Chauhan, A. Vaish, Bone cement. J. Clin. Orthop. Trauma 4, 157–163 (2013).  https://doi.org/10.1016/j.jcot.2013.11.005CrossRefGoogle Scholar
  9. 9.
    M.C. Birt, D.W. Anderson, E.B. Toby, J. Wang, Osteomyelitis: recent advances in pathophysiology and therapeutic strategies. J. Orthop. 14, 45–52 (2017).  https://doi.org/10.1016/j.jor.2016.10.004CrossRefGoogle Scholar
  10. 10.
    B. Maurel, T. Le Corroller, G. Bierry, X. Buy, P. Host, A. Gangi, Treatment of symptomatic para-articular intraosseous cysts by percutaneous injection of bone cement. Skelet. Radiol. 42, 43–48 (2013).  https://doi.org/10.1007/s00256-012-1392-7CrossRefGoogle Scholar
  11. 11.
    Z. He, Q. Zhai, M. Hu, C. Cao, J. Wang, H. Yang, B. Li, Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: current status and future developments. J. Orthop. Transl. 3, 1–11 (2015).  https://doi.org/10.1016/j.jot.2014.11.002CrossRefGoogle Scholar
  12. 12.
    L.E. Mermelstein, R.F. McLain, S.A. Yerby, Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. Spine (Phila Pa 1976) 23, 664–670 (1998).  https://doi.org/10.1097/00007632-199803150-00004CrossRefGoogle Scholar
  13. 13.
  14. 14.
    S. Rupprecht, H.A. Merten, P. Kessler, J. Wiltfang, Hydroxyapatite cement (BoneSourceTM) for repair of critical sized calvarian defects—an experimental study. J. Cranio-Maxillofacial Surg. 31, 149–153 (2003).  https://doi.org/10.1016/S1010-5182(03)00017-9CrossRefGoogle Scholar
  15. 15.
    G. Lewis, Properties of acrylic bone cement: state of the art review. J. Biomed. Mater. Res. 38, 155–182 (1997).  https://doi.org/10.1002/(SICI)1097-4636(199722)38:2%3c155:AID-JBM10%3e3.0.CO;2-CCrossRefGoogle Scholar
  16. 16.
    C.V. Rahman, A. Saeed, L.J. White, T.W.A. Gould, G.T.S. Kirby, M.J. Sawkins, C. Alexander, F.R.A.J. Rose, K.M. Shakesheff, Chemistry of polymer and ceramic-based injectable scaffolds and their applications in regenerative medicine. Chem. Mater. 24, 781–795 (2012).  https://doi.org/10.1021/cm202708nCrossRefGoogle Scholar
  17. 17.
    K.L. Low, S.H. Tan, S.H.S. Zein, J.A. Roether, V. Mouriño, A.R. Boccaccini, Calcium phosphate-based composites as injectable bone substitute materials. J. Biomed. Mater. Res. B Appl. Biomater. 94, 273–286 (2010).  https://doi.org/10.1002/jbm.b.31619CrossRefGoogle Scholar
  18. 18.
    M.P. Ginebra, M. Espanol, E.B. Montufar, R.A. Perez, G. Mestres, New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater. 6, 2863–2873 (2010).  https://doi.org/10.1016/j.actbio.2010.01.036CrossRefGoogle Scholar
  19. 19.
    W.C. Dewey, Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperth. 25, 3–20 (2009).  https://doi.org/10.1080/02656730902747919CrossRefGoogle Scholar
  20. 20.
    S.B. Field, C.C. Morris, The relationship between heating time and temperature: its relevance to clinical hyperthermia. Radiother. Oncol. 1, 179–186 (1983).  https://doi.org/10.1016/S0167-8140(83)80020-6CrossRefGoogle Scholar
  21. 21.
    G. Kraaij, D.F. Malan, H.J.L. van der Heide, J. Dankelman, R.G.H.H. Nelissen, E.R. Valstar, Comparison of Ho:YAG laser and coblation for interface tissue removal in minimally invasive hip refixation procedures. Med. Eng. Phys. 34, 370–377 (2012).  https://doi.org/10.1016/j.medengphy.2011.07.029CrossRefGoogle Scholar
  22. 22.
    A.R. Eriksson, T. Albrektsson, Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J. Prosthet. Dent. 50, 101–107 (1983).  https://doi.org/10.1016/0022-3913(83)90174-9CrossRefGoogle Scholar
  23. 23.
    H. Deramond, N. Wright, S. Belkoff, Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 25, 17S–21S (1999).  https://doi.org/10.1016/S8756-3282(99)00127-1CrossRefGoogle Scholar
  24. 24.
    J.K. Hurley, Acid-base balance: normal regulation and clinical application. Curr. Probl. Pediatr. 9, 1–43 (1979).  https://doi.org/10.1016/S0045-9380(79)80014-6CrossRefGoogle Scholar
  25. 25.
    OpenStax, Fluid, electrolyte, and acid-base balance, in Anatomy and Physiology (OpenStax CNX, 2016)Google Scholar
  26. 26.
    L.L. Hamm, N. Nakhoul, K.S. Hering-Smith, Acid-base homeostasis. Clin. J. Am. Soc. Nephrol. 10, 2232–2242 (2015).  https://doi.org/10.2215/CJN.07400715CrossRefGoogle Scholar
  27. 27.
    F.C.M. Driessens, J.A. Planell, M.G. Boltong, I. Khairoun, M.P. Ginebra, Osteotransductive bone cements. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 212, 427–435 (1998).  https://doi.org/10.1243/0954411981534196CrossRefGoogle Scholar
  28. 28.
    S.V. Dorozhkin, Self-setting calcium orthophosphate formulations. J. Funct. Biomater. 4, 209–311 (2013).  https://doi.org/10.3390/jfb4040209CrossRefGoogle Scholar
  29. 29.
    R. Nadiv, G. Vasilyev, M. Shtein, A. Peled, E. Zussman, O. Regev, The multiple roles of a dispersant in nanocomposite systems. Compos Sci. Technol. 133, 192–199 (2016).  https://doi.org/10.1016/j.compscitech.2016.07.008CrossRefGoogle Scholar
  30. 30.
    M. Bohner, G. Baroud, Injectability of calcium phosphate pastes. Biomaterials 26, 1553–1563 (2005).  https://doi.org/10.1016/j.biomaterials.2004.05.010CrossRefGoogle Scholar
  31. 31.
    J.A.J. Wagoner, B.A. Herschler, A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7, 16–30 (2011).  https://doi.org/10.1016/j.actbio.2010.07.012CrossRefGoogle Scholar
  32. 32.
    A. Sugawara, K. Asaoka, S.J. Ding, Calcium phosphate-based cements: clinical needs and recent progress. J. Mater. Chem. B 1, 1081–1089 (2013).  https://doi.org/10.1039/c2tb00061jCrossRefGoogle Scholar
  33. 33.
    F. Chen, C. Liu, J. Wei, X. Chen, Physicochemical properties and biocompatibility of white dextrin modified injectable calcium-magnesium phosphate cement. Int. J. Appl. Ceram. Technol. 9, 979–990 (2012).  https://doi.org/10.1111/j.1744-7402.2011.02705.xCrossRefGoogle Scholar
  34. 34.
    J.W. Nicholson, The Chemistry of Polymers, 3rd edn. (RSC Publishing, Dorset, 2006)Google Scholar
  35. 35.
    A.S. Wagh, Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications (Elsevier Ltd, Oxford, 2004)Google Scholar
  36. 36.
    J.W. Bullard, H.M. Jennings, R.A. Livingston, A. Nonat, G.W. Scherer, J.S. Schweitzer, K.L. Scrivener, J.J. Thomas, Mechanisms of cement hydration. Cem. Concr. Res. 41, 1208–1223 (2011).  https://doi.org/10.1016/j.cemconres.2010.09.011CrossRefGoogle Scholar
  37. 37.
    J.J. Thomas, J.J. Biernacki, J.W. Bullard, S. Bishnoi, J.S. Dolado, G.W. Scherer, A. Luttge, Modeling and simulation of cement hydration kinetics and microstructure development. Cem. Concr. Res. 41, 1257–1278 (2011).  https://doi.org/10.1016/j.cemconres.2010.10.004CrossRefGoogle Scholar
  38. 38.
    F. Tamimi, Z. Sheikh, J. Barralet, Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 8, 474–487 (2012).  https://doi.org/10.1016/j.actbio.2011.08.005CrossRefGoogle Scholar
  39. 39.
    F. Wu, J. Su, J. Wei, H. Guo, C. Liu, Injectable bioactive calcium-magnesium phosphate cement for bone regeneration. Biomed. Mater. 3, 044105 (2008).  https://doi.org/10.1088/1748-6041/3/4/044105ADSCrossRefGoogle Scholar
  40. 40.
    M. Habib, G. Baroud, F. Gitzhofer, M. Bohner, Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomater. 4, 1465–1471 (2008).  https://doi.org/10.1016/j.actbio.2008.03.004CrossRefGoogle Scholar
  41. 41.
    C. Moseke, V. Saratsis, U. Gbureck, Injectability and mechanical properties of magnesium phosphate cements. J. Mater. Sci. Mater. Med. 22, 2591–2598 (2011).  https://doi.org/10.1007/s10856-011-4442-0CrossRefGoogle Scholar
  42. 42.
    M. Espanol, R.A. Perez, E.B. Montufar, C. Marichal, A. Sacco, M.P. Ginebra, Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater. 5, 2752–2762 (2009).  https://doi.org/10.1016/j.actbio.2009.03.011CrossRefGoogle Scholar
  43. 43.
    H.A. Samad, M. Jaafar, Effect of polymethyl methacrylate (PMMA) powder to liquid monomer (P/L) ratio and powder molecular weight on the properties of PMMA cement. Polym. Plast. Technol. Eng. 48, 554–560 (2009).  https://doi.org/10.1080/03602550902824374CrossRefGoogle Scholar
  44. 44.
    S.J. Peter, Injectable, in situ polymerizable, biodegradable scaffold based on poly(propylene fumarate) for guided bone regeneration, Rice University, 1998Google Scholar
  45. 45.
    E.B. Montufar, Y. Maazouz, M.P. Ginebra, Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomater. 9, 6188–6198 (2013).  https://doi.org/10.1016/j.actbio.2012.11.028CrossRefGoogle Scholar
  46. 46.
    U. Klammert, T. Reuther, M. Blank, I. Reske, J.E. Barralet, L.M. Grover, A.C. Kübler, U. Gbureck, Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomater. 6, 1529–1535 (2010).  https://doi.org/10.1016/j.actbio.2009.10.021CrossRefGoogle Scholar
  47. 47.
    E.B. Montufar, T. Traykova, E. Schacht, L. Ambrosio, M. Santin, J.A. Planell, M.-P. Ginebra, Self-hardening calcium deficient hydroxyapatite/gelatine foams for bone regeneration. J. Mater. Sci. Mater. Med. 21, 863–869 (2010).  https://doi.org/10.1007/s10856-009-3918-7CrossRefGoogle Scholar
  48. 48.
    F. Perut, E.B. Montufar, G. Ciapetti, M. Santin, J. Salvage, T. Traykova, J.A. Planell, M.P. Ginebra, N. Baldini, Novel soybean/gelatine-based bioactive and injectable hydroxyapatite foam: material properties and cell response. Acta Biomater. 7, 1780–1787 (2011).  https://doi.org/10.1016/j.actbio.2010.12.012CrossRefGoogle Scholar
  49. 49.
    G. Mestres, M.-P. Ginebra, Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 7, 1853–1861 (2011).  https://doi.org/10.1016/j.actbio.2010.12.008CrossRefGoogle Scholar
  50. 50.
    M.H. Alkhraisat, J. Cabrejos-Azama, C.R. Rodríguez, L.B. Jerez, E.L. Cabarcos, Magnesium substitution in brushite cements. Mater. Sci. Eng. C 33, 475–481 (2013).  https://doi.org/10.1016/j.msec.2012.09.017CrossRefGoogle Scholar
  51. 51.
    M.H. Esnaashary, H.R. Rezaie, A. Khavandi, J. Javadpour, Solubility controlling of the precursor powders of magnesium phosphate cement by changing the powder composition. Adv. Appl. Ceram. 116, 286–292 (2017).  https://doi.org/10.1080/17436753.2017.1315860CrossRefGoogle Scholar
  52. 52.
    M.H. Esnaashary, H.R. Rezaie, A. Khavandi, J. Javadpour, Evaluation of setting time and compressive strength of a new bone cement precursor powder containing Mg–Na–Ca. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 232, 1017–1024 (2018).  https://doi.org/10.1177/0954411918796048CrossRefGoogle Scholar
  53. 53.
    K. Shin, T. Acri, S. Geary, A.K. Salem, Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Eng. Part A 23, 1169–1180 (2017).  https://doi.org/10.1089/ten.tea.2016.0556CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hamid Reza Rezaie
    • 1
    Email author
  • Mohammad Hossein Esnaashary
    • 1
  • Masoud Karfarma
    • 1
  • Andreas Öchsner
    • 2
  1. 1.Ceramic and Biomaterial Division, Department of Engineering MaterialsIran University of Science and TechnologyTehranIran
  2. 2.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingen am NeckarGermany

Personalised recommendations