Characterizations on Crystalline Structures and Defect Distributions

  • Ching-Hua SuEmail author


The crystalline structural quality of the grown crystals were examined by synchrotron white beam X-ray topography (SWBXT), high resolution triple axis X-ray diffraction (HRTXD) analysis, cathodoluminescence (CL) imaging and chemical etching. Two modes of SWBXT have been performed: (1) the transmission mode when the images of X-ray transmitted through a thin sample slab and (2) the reflection mode from the sample surface. Detailed topographs and HRTXD analyses have been performed on self-seeded grown ZnTe and ZnSe crystals as well as seeded grown ZnSe crystals. The major structural defects revealed on these vapor grown II–VI semiconductors were twins, subgrain boundary and dislocations. Chemical etching and cathodoluminescence revealed the density and shape of the dislocations in grown crystals of ZnSe, CdTe and CdS. The concentrations of impurities and dopants in the grown crystals were examined by Secondary Ion Mass Spectroscopy (SIMS) and Glow Discharge Mass Spectroscopy (GDMS) whereas the distributions of impurities and native point defects were mapped by photoluminescence (PL). The compositional distributions in the grown crystals of ternary ZnSeTe crystals were studied by wavelength dispersive X-ray spectroscopy (WDS), optical transmission measurements and precision density measurements.


Synchrotron white beam X-ray topography (SWBXT) High resolution triple axis X-ray diffraction (HRTXD) Cathodoluminescence Secondary ion mass spectroscopy (SIMS) Glow discharge mass spectroscopy (GDMS) Photoluminescence (PL) 


  1. 1.
    W. Zhou, J. Wu, M. Dudley, C.-H. Su, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, Mater. Res. Soc. Symp. Proc., Infrared Detectors—Materials, Processing, and Devices, A. Applebaum and L. R. Dawson (eds.) 299, 203 (1994)Google Scholar
  2. 2.
    W. Zhou, M. Dudley, J. Wu, C.-H. Su, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, Mater. Sci. Eng. B27, 143 (1994)Google Scholar
  3. 3.
    C.-H. Su, M. Dudley, R. Matyi, S. Feth, S.L. Lehoczky, J. Crystal Growth 208, 237 (2000)Google Scholar
  4. 4.
    Y. Yoshioka, H. Yoda, M. Kasuga, J. Crystal Growth 115, 705 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    R. Shetty, W.R. Wilcox, L.L. Regel, J. Crystal Growth 153, 103 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    K. Chattopadhyay, S. Feth, H. Chen, A. Burger, C.-H. Su, J. Crystal growth 191, 377 (1998)Google Scholar
  7. 7.
    C.-H. Su, S. Feth, D. Hirschfeld, T.M. Smith, L.J. Wang, M.P. Volz, S.L. Lehoczky, J. Crystal Growth 204, 41 (1999)Google Scholar
  8. 8.
    C.-H. Su, S. Feth, L.J. Wang, S.L. Lehoczky, J. Crystal Growth 224 32 (2001)Google Scholar
  9. 9.
    Y. Korostelin, V.I. Kozlovsky, A.S. Nasibov, P.V. Shapkin, J. Crystal Growth 197, 449 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    K. Yoneda, Y. Hishida, T. Toda, H. Ishii, T. Niina, Appl. Phys. Lett. 45, 1300 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    K.P. Giapis, D.-C. Lu, K.F. Jensen, Appl. Phys. Lett. 54, 353 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Zhu, G.D. Brownlie, P.J. Thompson, K.K. Prior, B.C. Cavenett, Appl. Phys. Lett. 67, 3762 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Merz, H. Kukimoto, K. Nassau, J.W. Shiever, Phys. Rev. B 6, 545 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    M. Isshiki, T. Yoshida, K. Igaki, W. Uchida, S. Suto, J. Crystal Growth 72, 162 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    M. Isshiki, T. Yoshida, T. Tomizono, S. Satoh, K. Igaki, J. Crystal Growth 73, 221 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Dean, D.C. Herbert, C.J. Werkhoven, B.J. Fitzpatrick, R.N. Bhargava, Phys. Rev. B 23, 4888 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    J.L. Merz, K. Nassau, J.W. Shiever, Phys. Rev. B 8, 1444 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    J.C. Bouley, P. Blanconnier, A. Herman, Ph. Ged. P. Henoc, J.P. Noblanc, J. Appl. Phys. 46, 3549 (1975)Google Scholar
  19. 19.
    S.-M. Huang, Y. Nozue, K. Igaki, Jpn. J. Appl. Phys. 22, L420 (1983)CrossRefGoogle Scholar
  20. 20.
    E. Tournie, C. Morhain, G. Neu, M. Laugt, C. Ongaretto, J.-P. Faurie, R. Triboulet, J.O. Ndap, J. Appl. Phys. 80, 2983 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    M. Tajima, T. Masui, D. Itoh, T. Nishino, J. Electrochem. Soc. 137, 3544 (1990)CrossRefGoogle Scholar
  22. 22.
    M. Isshiki, K. Masumoto, W. Uchida, S. Satoh, Jpn. J. Appl. Phys. 30, 515 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    K. Shahazad, D.J. Olego, D.A. Cammach, Phys. Rev. B 39, 13016 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    T. Yodo, T. Koyama, K. Yamashita, J. Appl. Phys. 64, 2403 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    P.J. Dean, B.J. Fitzpatrick, R.N. Bhargava, Phys. Rev. B 26, 2016 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Zhu, H. Mori, T. Yao, J. Appl. Phys. 73, 1146 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. DePuydt, T.L. Smith, J.E. Potts, H. Cheng, S.K. Mohapatra, J. Crystal Growth 86, 318 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    C.-H. Su, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, M. Dudley, G.-D. Yao, W. Zhou, J. Crystal Growth, 128, 627 (1993)Google Scholar
  29. 29.
    M.P. Volz, C.-H. Su, S.L. Lehoczky, F.R. Szofran, Phys. Rev. B46, 76 (1992)Google Scholar
  30. 30.
    B. Yang, Y. Ishikawa, Y. Doumae, T. Miki, T. Ohyama, M. Isshiki, J. Crystal Growth 172, 370 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    M. Soltani, M. Certier, R. Errard, E. Kartheuser, J. Appl. Phys. 78, 5626 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    S. Seto, A. Tanaka, K. Suzuki, M. Kawashima, J. Crystal Growth 101, 430 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    J.M. Wrobel, J.J. Dubowski, P. Becla, J. Vac. Sci. Technol. A 7, 338 (1989)ADSCrossRefGoogle Scholar
  34. 34.
    N.C. Giles, S. Hwang, J.F. Schetzina, S. McDevitt, C.J. Johnson, J. Appl. Phys. 64, 2656 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    P. Siffert, A. Cornet, R. Stuck, R. Triboulet, Y. Marfaing, IEEE Trans. Nucl. Sci. NS-22, 211 (1975)ADSCrossRefGoogle Scholar
  36. 36.
    A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S.H. Morgan, C.I. Rablau, C.-H. Su, S. Feth, R. page, K.I. Schaffers, S.A. Payne, J. Crystal Growth 225, 249 (2001)Google Scholar
  37. 37.
    C.-H. Su, S. Feth, M.P. Volz, R. Matyi, M.A. George, A. Burger, S.L. Lehoczky, J. Crystal Growth 207, 35 (1999)Google Scholar
  38. 38.
    J.T. Vallin, G.A. Slack, S. Roberts, Phys. Rev. B 2, 4313 (1970)ADSCrossRefGoogle Scholar
  39. 39.
    C.-H. Su, Y.-G. Sha, M.P. Volz, P. Carpenter, S.L. Lehoczky, J. Crystal Growth 216, 104 (2000)Google Scholar
  40. 40.
    Y.-G. Sha, C.-H. Su, S.L. Lehoczky, J. Crystal Growth 171, 516 (1997)Google Scholar
  41. 41.
    C.-H. Su, unpublishedGoogle Scholar
  42. 42.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, I. Miotkowski, A.K. Ramdas, C.-H. Su, Phys. Rev. B 68, 033206(1–4) (2003)Google Scholar
  43. 43.
    J. Wu, K.M. Yu, W. Walukiewicz, J.W. Ager III, E.E. Haller, I. Miotkowski, A.K. Ramdas, Ching-Hua Su, I.K. Sou, R.C.C. Perera, J.D. Denlinger, Phys. Rev. B 67, 035207(1–5) (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.HuntsvilleUSA

Personalised recommendations