Crystal Growth

  • Ching-Hua SuEmail author


After the optimum heat treatments on the growth ampoules and the source materials, the sealed ampoules were processed in a thermal profile by a three-zone furnace (left cold zone, central booster zone and right hot zone) with an adiabatic zone inserted between the central booster heater and the cold zone. During the growth, the thermal profile moved toward the hot end, through translation of either furnace or ampoule, with a rate carefully selected from the results of transport rate measurements. Relative to the gravitational direction, three different growth configurations, i.e., horizontal, vertical stabilized (hot end on top) and vertical destabilized (cold end on top), were practiced. For each configuration, the growth ampoule was designed for either self-seeded or seeded growth. The PVT growth experiments were performed on the systems of ZnSe, ZnSe doped with transition metal (Cr and Fe), ZnSeTe, CdTe, CdS and ZnTe. During the growth of ZnSe, in-situ real time optical methods were performed to monitor the growth. The methods included in-situ visual observation of the growing crystal, in-situ optical absorption to measure the partial pressures along the growth ampoule and optical interferometry to map the morphology of growing surface. Lastly, a recent advancement to enhance the transport rate of PVT was developed by installing an extra out-layer of evacuated closed tube around the growth ampoule to reduce the vapor pressure diffusing into the growth ampoule.


Seeded growth Self-seeded growth Horizontal growth Vertical stabilized growth Vertical destabilized growth In-situ real time monitoring 


  1. 1.
    D.J. Lawson, Jr., J.I.D. Alexander, D. Gillies, F.M. Carlson, J. Wu, D. Black, Joint Launch + One Year Science Review of USML-1, in NASA Conference Publication 3272, vol. 1 (1994), pp. 129Google Scholar
  2. 2.
    C.-H. Su, M.A. George, W. Palosz, S. Feth, S.L. Lehoczky, J. Cryst. Growth 213 (2000), 267Google Scholar
  3. 3.
    C.-H. Su, S.L. Lehoczky, F.R. Szofran, J. Appl. Phys. 60 (1986), 3777Google Scholar
  4. 4.
    W. Palosz, H. Wiedemeier, J. Cryst. Growth 131, 193 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    W. Palosz, F.R. Szofran, S.L. Lehoczky, J. Cryst. Growth 142, 215 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    W. Palosz, J. Cryst. Growth 191, 897 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    W. Palosz, J. Cryst. Growth 267, 475 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    C.-H. Su, S.L. Lehoczky, F.R. Szofran, J. Cryst. Growth 101 (1990), 221Google Scholar
  9. 9.
    C.-H. Su, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, M. Dudley, G.-D. Yao, W. Zhou, J. Cryst. Growth 128, 627 (1993)Google Scholar
  10. 10.
    C.-H. Su, Y.-G. Sha, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, W. Zhou, M. Dudley, H.-C. Liu, R.F. Brebrick, J.C. Wang, Proc. AIAA 32nd Aerospace Sciences Meeting (1994), paper 94-0564Google Scholar
  11. 11.
    C.-H. Su, Y.-G. Sha, Current Topics in Crystal Growth Research, vol. 2 (1995), p. 401Google Scholar
  12. 12.
    C.-H. Su, Y.-G. Sha, K. Mazuruk, S.L. Lehoczky, H.-C. Liu, R. Fang, R.F. Brebrick, J. Cryst. Growth 166, 736 (1996)Google Scholar
  13. 13.
    L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, W.F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    R.H. Page, K.I. Schaffers, L.D. Deloach, G.D. Wilke, F.D. Patel, J.B. Tassano Jr., S.A. Payne, W.F. Krupke, K.-T. Chen, A. Burger, IEEE J. Quantum Electron. 33, 609 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    J. McKay, K.L. Schepler, G. Catella, OSA TOPS 26, 420 (1999)Google Scholar
  16. 16.
    R.H. Page, J.A. Skidmore, K.I. Schaffers, R.J. Beach, S.A. Payne, W.F. Krupke, in OSA, Trends in Optics and Photonics, ed. by C. R. Pollock, W. R. Bosenberg, vol. 10 (OSA, Washington, DC, 1997), p. 208Google Scholar
  17. 17.
    M. Seiter, D. Keller, M.W. Sigrist, Appl. Phys. B 67, 351 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    C.-H. Su, Y.-G. Sha, M.P. Volz, P. Carpenter, S.L. Lehoczky, J. Cryst. Growth 216, 104 (2000)Google Scholar
  19. 19.
    K. Zanio, W. Akutagawa, J.W. Mayer, Appl. Phys. Lett. 11, 5 (1967)ADSCrossRefGoogle Scholar
  20. 20.
    T. Taguchi, J. Shirafuji, Y. Inuishi, Jpn. J. Appl. Phys. 13, 1169 (1974)ADSCrossRefGoogle Scholar
  21. 21.
    P. Siffert, A. Cornet, R. Stuck, R. Triboulet, Y. Marfaing, IEEE Trans. Nucl. Sci. NS 22, 211 (1975)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Tranchart, P. Bach, J. Crystal Growth 32, 8 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    R.O. Bell, F.V. Wald, C. Canali, F. Nava, G. Ottaviani, IEEE Trans. Nucl. Sci. NS 21, 331 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    C. Eiche, W. Joerger, M. Fiederle, D. Ebling, R. Schwarz, K.W. Benz, J. Cryst. Growth 146, 98 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    H. Chen, S.A. Awadalla, K. Iniewski, P.H. Lu, F. Harris, J. Mackenzie, T. Hasanen, W. Chen, R. Redden, G. Bindley, I. Kuvvetli, C. Budtz-Jørgensen, P. Luke, M. Amman, J.S. Lee, A.E. Bolotnikov, G.S. Camarda, Y. Cui, A. Hossain, R.B. James, J. Appl. Phys. 103, 014903 (2008)Google Scholar
  26. 26.
    S.A. Awadalla, J. Mackenzie, H. Chen, B. Redden, G. Bindley, M.C. Duff, A. Burger, M. Groza, V. Buliga, J.P. Bradley, Z.R. Dai, N. Teslich, D.R. Black, J. Cryst. Growth 312, 507 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    K. Chattopadhyay, S. Feth, H. Chen, A. Burger, C.-H. Su, J. Crystal growth 191, 377 (1998)Google Scholar
  28. 28.
    C.-H. Su, Y.-G. Sha, S.L. Lehoczky, H.-C. Liu, R. Fang, R.F. Brebrick, J. Cryst. Growth 183, 519 (1998)Google Scholar
  29. 29.
    D.C. Reynolds, L.C. Green, J. Appl. Phys. 29, 559 (1958)ADSCrossRefGoogle Scholar
  30. 30.
    L.C. Green, D.C. Reynolds, S.J. Czyzak, W.M. Baker, J. Chem. Phys. 29, 1375 (1958)ADSCrossRefGoogle Scholar
  31. 31.
    D.R. Boyd, Y.T. Sihvonen, J. Appl. Phys. 30, 176 (1959)Google Scholar
  32. 32.
    W.W. Piper, S.J. Polich, J. Appl. Phys. 32, 1278 (1961)ADSCrossRefGoogle Scholar
  33. 33.
    N. Henimat, M. Weinstein, J. Electrochem. Soc. 114, 851 (1967)CrossRefGoogle Scholar
  34. 34.
    P.D. Fochs, W. George, P.D. Augustus, J. Cryst. Growth 3(4), 122 (1968)ADSCrossRefGoogle Scholar
  35. 35.
    L. Clark, J. Woods, J. Cryst. Growth 3(4), 127 (1968)ADSGoogle Scholar
  36. 36.
    L.M. Rouse, E.A.D. White, J. Cryst. Growth 17, 117 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    R. Takahashi, Japan. J. Appl. Phys. 17, 1275 (1978)CrossRefGoogle Scholar
  38. 38.
    G.H. Dierssen, T. Gabor, J. Cryst. Growth 43, 572 (1978)ADSCrossRefGoogle Scholar
  39. 39.
    G.J. Russell, J. Woods, J. Cryst. Growth 46, 323 (1979)ADSCrossRefGoogle Scholar
  40. 40.
    M. Aven, B. Segall, Phys. Rev. 150, 541 (1966)CrossRefGoogle Scholar
  41. 41.
    M. Aven, J. Appl. Phys. 38, 4421 (1967)ADSCrossRefGoogle Scholar
  42. 42.
    A.S. Jordan, L. Derick, J. Electrochem. Soc. 116, 1424 (1969)CrossRefGoogle Scholar
  43. 43.
    W. Zhou, J. Wu, M. Dudley, C.-H. Su, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, Infrared detectors—materials, processing, and devices, in Materials Research Society Symposium Proceedings, ed. by A. Applebaum, L.R. Dawson, vol. 299 (1994), p. 203Google Scholar
  44. 44.
    C.-H. Su, S. Feth, S.L. Lehoczky, J. Cryst. Growth 209, 687 (2000)Google Scholar
  45. 45.
    C.-H. Su, S. Feth, S.L. Lehoczky, Mater. Lett. 63, 1475 (2009)Google Scholar
  46. 46.
    S.-Y. Cha, Private communicationGoogle Scholar
  47. 47.
    C.-H. Su, S.L. Lehoczky, J. Cryst. Growth 319, 4 (2011)Google Scholar
  48. 48.
    J.R. Farver, R.A. Yund, Chem. Geol. 90, 55 (1991)Google Scholar
  49. 49.
    C.-H. Su, Submitted to Crystal Res. Technol.Google Scholar
  50. 50.
    Y.-G. Sha, C.-H. Su, W. Palosz, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, H.-C. Liu, R.F. Brebrick, J. Cryst. Growth 146, 42 (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.HuntsvilleUSA

Personalised recommendations