Advertisement

Fundamentals of Physical Vapor Transport Process

  • Ching-Hua SuEmail author
Chapter

Abstract

The crystal growth of physical vapor transport (PVT) transforms the original source material powder into the final form of compound semiconducting crystal in a closed ampoule. The vapor species were transported from the source at one end of the ampoule to the crystal at the other end because of the applied temperature gradient between the source and the crystal. To understand the fundamentals of PVT, one of the most important parameters during PVT, the partial pressures of the vapor species in equilibrium with the compounds as a function of temperature with different stoichiometry, have been measured by optical absorption technique to establish the three-phase curve. Then using an associated solution model for the liquid phase, which is assumed to consist of certain atomic/molecular species, the Gibbs energy of mixing for the liquid can be expressed in terms of the interaction parameters between these species. After the establishment of the best-fit parameters, the complete phase diagram and thermodynamic properties of the system can be generated for the applications of crystal growth experiments. The thermodynamic analysis has been applied to binary, ternary and quaternary systems such as Hg–Te, Cd–Te and Hg–Cd–Te as well as In–Sb, Ga–Sb and In–Ga–Sb, Hg–Cd–Zn–Te, Zn–Se and Zn–Se–Te. Then, a one-dimensional diffusion model, which includes the vapor species in equilibrium with a binary compound and the residual inert gases, was established to identify the critical growth parameters such as the heat treatment conditions, the thermal field for the growth process, the composition of the grown (ternary) crystal as well as the growth rate. From the results of the one-dimensional diffusion analysis, four experimentally adjustable parameters: the source temperature, the deposition temperature, the partial pressure ratio over the source and the residual gas pressure, determine the diffusive mass flux in a PVT system. However, two of these four parameters, the partial pressure ratio over source and the residual gas pressure, are more critical than the others.

Keywords

Partial pressure Three-phase curve Associated solution model One-dimensional diffusion model 

References

  1. 1.
    Y. Huang, R.F. Brebrick, J. Electrochem. Soc. 135, 486 (1988)CrossRefGoogle Scholar
  2. 2.
    R.F. Brebrick, A.J. Strauss, J. Chem. Phys. 40, 3230 (1964)ADSCrossRefGoogle Scholar
  3. 3.
    D.A. Northrup, J. Phys. Chem. 75, 118 (1971)CrossRefGoogle Scholar
  4. 4.
    R.F. Brebrick, A.J. Strauss, J. Chem. Phys. 41, 197 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Huang, R.F. Brebrick, J. Electrochem. Soc. 135, 1547 (1988)CrossRefGoogle Scholar
  6. 6.
    R.C. Sharma, U.A. Chang, J. Cryst. Growth 88, 193 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    Y.G. Sha, C.H. Su, W. Palosz, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, H.-C. Liu, R.F. Brebrick. J. Cryst. Growth 146, 42 (1995)Google Scholar
  8. 8.
    R.F. Brebrick, H.-C. Liu, High Temp. Mater. Sci. 35, 215 (1996)Google Scholar
  9. 9.
    R.F. Brebrick, J. Electrochem. Soc. 116, 1274 (1969)CrossRefGoogle Scholar
  10. 10.
    P. Goldfinger, M. Jeunehomme, Trans. Faraday Soc. 59, 2851 (1963)CrossRefGoogle Scholar
  11. 11.
    P.Z. Floegel, Anorg. Allg. Chem. 370, 16 (1969)CrossRefGoogle Scholar
  12. 12.
    R.F. Brebrick, J. Electrochem. Soc. 135, 486 (1971)Google Scholar
  13. 13.
    H. Liu, Ph.D. Dissertation, Marquette University, March 1995Google Scholar
  14. 14.
    R.F. Brebrick, H.-C. Liu, J. Ph. Equilib. 17, 495 (1996)CrossRefGoogle Scholar
  15. 15.
    T.-C. Yu, R.F. Brebrick, J. Ph. Equilib. 13, 476 (1992)CrossRefGoogle Scholar
  16. 16.
    A.N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Elsevier Publishing Co., Amsterdam/London/New York, 1963)Google Scholar
  17. 17.
    R.F. Brebrick, Prog. Solid State Chem. 13, Ch. 5. in Non Stoichiometry in Binary Semiconductor Compounds, ed. by H. Reiss (Pergamon Press, Oxford 1967), p. 213Google Scholar
  18. 18.
    Su Ching-Hua, Mater. Sci. Semicond. Proc. 90, 259 (2019)CrossRefGoogle Scholar
  19. 19.
    R.F. Brebrick, J. Electrochem. Soc. 118, 2014 (1971)CrossRefGoogle Scholar
  20. 20.
    R.F. Brebrick, A.J. Strauss, J. Phys. Chem. Solids 26, 989 (1965)ADSCrossRefGoogle Scholar
  21. 21.
    C.H. Su, P.-K. Liao, T. Tung, R.F. Brebrick, High Temp. Sci. 14, 181 (1981)Google Scholar
  22. 22.
    R.F. Brebrick, J. Chem. Phys. 43, 3846 (1965)ADSCrossRefGoogle Scholar
  23. 23.
    Su Ching-Hua, Cryst. Growth 281, 577 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    J.P. Schwartz, T. Tung, R.F. Brebrick, J. Electrochem. Soc. 128, 438 (1981)CrossRefGoogle Scholar
  25. 25.
    T. Tung, L. Golonka, R.F. Brebrick, J. Electrochem. Soc. 128, 451 (1981)CrossRefGoogle Scholar
  26. 26.
    C.H. Su, P.-K. Liao, R.F. Brebrick, J. Electrochem. Soc. 132, 942 (1985)Google Scholar
  27. 27.
    K.-T. Chen, Y.-G. Sha, R.F. Brebrick, J. Vac. Sci. Technol. A8, 1086 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    K.C. Mills, Thermodynamic Data for Inorganic Sulfides, Selinides, and Tellurides (Butterworth, London, 1974)Google Scholar
  29. 29.
    R.F. Brebrick, C.H. Su, P.K. Liao, Semiconductors and Semimetals, vol. 19, ed. by R.K. Willardson, A.C. Beer (Academic Press, NY, 1983)Google Scholar
  30. 30.
    M.M. Faktor, I. Garrett, Growth of Crystals from the Vapour (Chapman and Hall, London, 1974)Google Scholar
  31. 31.
    Su Ching-Hua, Cryst. Growth 80, 333 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    R.C. Reid, J.M. Prausnitx, T.K. Sherwood, The Properties of Gasses and Liquids, 3rd edn. (McGraw-Hill, New York, 1977), p. 113Google Scholar
  33. 33.
    C.H. Su, P.K. Liao, Y. Huang, S.-S. Liou, R.F. Brebrick, J. Chem. Phys. 81, 11 (1984)Google Scholar
  34. 34.
    D.M. Shteingradt, V.E. Lyusternik, Russ. J. Phys. Chem. 56, 1379 (1982)Google Scholar
  35. 35.
    R.A. Svehla, NASA Tech Report R-132 (Lewis Research Center, Cleveland, Ohio 1962)Google Scholar
  36. 36.
    G.J. Russell, J. Woods, J. Cryst. Growth 46, 323 (1979)ADSCrossRefGoogle Scholar
  37. 37.
    G. Schmidt, R. Gruehn, J. Cryst. Growth 57, 585 (1982)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Morimoto, T. Igarashi, H. Sugahara, S. Nasu, J. Non-Cryst. Solids 139, 35 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    T.C. Harman, J.P. McVittie, J. Electron. Mater. 3, 843 (1974)ADSCrossRefGoogle Scholar
  40. 40.
    W. Palosz, H. Wiedemeier, J. Cryst. Growth 131, 193 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    W. Palosz, F.R. Szofran, S.L. Lehoczky, J. Cryst. Growth 142, 215 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    W. Palosz, J. Cryst. Growth 267, 475 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    T.K. Sherwood, Absorption and Extraction (McGraw-Hill, New York, 1937)Google Scholar
  44. 44.
    W. Palosz, H. Wiedemeier, J. Cryst. Growth 129, 653 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    K. Klosse, P. Ullersma, J. Cryst. Growth 18, 167 (1973)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.HuntsvilleUSA

Personalised recommendations