Advertisement

Introduction

  • Ching-Hua SuEmail author
Chapter

Abstract

Interest in optical devices which can operate in the visible spectrum has motivated research interest in the semiconductors of wide bandgap II–VI compounds, such as ZnSe, ZnS, ZnTe, CdS and CdSe and their solid solutions, which are expected to be the vital materials for high-performance optoelectronics devices such as light-emitting diodes (LEDs) and laser diodes operating in the blue spectrum and ultraviolet detectors. Compounds of the group II–VI elements, specifically, ZnS, ZnSe, ZnTe, CdS and CdSe, providing as matrix materials for doping with transition metal as activator ions, also promise wide coverage of the mid-IR spectrum for the development of solid-state lasers. In the bulk growth of some technologically important semiconductors, growth technique of physical vapor transport (PVT) have significant advantages over melt growth because of the high melting points of these materials. The continued improvement in overall device performance requires bulk crystals with less structural defects such as twins, lattice strain, dislocations, grain boundaries and second phase inclusions. The electrical and consequently the optical properties of the materials depend on the deviation from stoichiometry, the impurity or dopant distribution, and native point defects. The compositional homogeneity becomes extremely important for the ternary alloys because the non-uniformity in composition implies a response at different wavelengths across the crystal wafer. The realization of high performance devices is dependent on the routine production of high-quality, single-crystalline wafers which requires systematic investigations on the correlations between the process conditions of the PVT and various properties of grown crystal.

Keywords

Physical vapor transport (PVT) II–VI compound semiconductors Zinc selenide (ZnSe) Cadmium sulfide (CdS) Zinc telluride (ZnTe) Zinc selenide telluride (ZnSe1-xTex

References

  1. 1.
    H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    A.N. Krasnov, Y. Purtov, Y. Vaksman, V.V. Sverdyuk, J. Crystal Growth 125, 373 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    H. Kukimoto, Semicond. Sci. Technol. 6, A14 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    X.H. Yang, J.M. Hays, W. Shan, J.J. Song, E. Cantwell, Appl. Phys. Lett. 62, 1072 (1993)ADSGoogle Scholar
  5. 5.
    H. Jeon, J. Ding, A.V. Nurmikko, W. Xie, D.C. Grillo, M. Kobayashi, R.L. Gunshor, G.C. Hua, N. Otsuka, Appl. Phys. Lett. 60, 2045 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    K. Nakanishi, I. Suemune, Y. Fujii, Y. Kuroda, M. Yamanishi, Appl. Phys. Lett. 59, 1401 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    G.F. Neumark, R.M. Park, J.M. Depuydt, Phys. Today 47, 26 (1994)CrossRefGoogle Scholar
  8. 8.
    V. Daneu, D.P. DeGloria, A. Sanchez, F. Tong, R.M. Osgood Jr., Appl. Phys. Lett. 49, 546 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    L.H. Kuo, L. Salamanca-Riba, B.J. Wu, G.M. Haugen, J.M. Depuydt, G. Hofler, H. Cheng, J. Vac. Sci. Technol. B13, 1694 (1995)CrossRefGoogle Scholar
  10. 10.
    M. Hovinen, J. Ding, A. Salokatve, A.V. Nurmikko, C. Hua, D.C. Grillo, L. He, J. Han, M. Ringle, R.L. Gunshor, J. Appl. Phys. 77, 4150 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    J.A.B. Howie, G.K. Rowles, P. Hawkins, Meas. Sci. Technol. 2, 1070 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    M.E. Ozsan, J. Woods, J. Phys. D10, 1335 (1977)ADSGoogle Scholar
  13. 13.
    W. Stutius, Appl. Phys. Lett. 33, 657 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    J. Nishizawa, K. Itoh, Y. Okuno, F. Sakurai, J. Appl. Phys. 57, 2210 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    X.W. Fan, Z.K. Tang, H. Tian, J. Crystal Growth 101, 944 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    H. Kukimoto, J. Crystal Growth 101, 953 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    X.H. Yang, J. Hays, W. Shane, J.J. Song, E. Cantewell, J. Aldridge, Appl. Phys. Lett. 60, 926 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    H. Jeon, J. Ding, W. Patterson, A.V. Nurmikko, W. Xie, D.C. Grillo, M. Kobayashi, R.L. Gunshor, Appl. Phys. Lett. 59, 3619 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    K. Ichino, Y.-H. Wu, Y. Kawakami, S. Fujita, S. Fujita, J. Crystal Growth 117, 527 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    I.M. Catalano, A. Cingolani, M. Ferrara, M. Lugara, Solid State Commun. 43, 371 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    X.H. Yang, J. Hays, W. Shan, J.J. Song, E. Cantwell, J. Aldridge, Appl. Phys. Lett. 59, 1681 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    I. Suemune, K. Yamada, H. Masato, Y. Kan, M. Yamanishi, Appl. Phys. Lett. 54, 981 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    K. Nakanishi, I. Suemune, H. Masato, Y. Kuroda, M. Yamanishi, Jap. J. Appl. Phys. 29, L2420 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    H. Jeon, J. Ding, A.V. Nurmikko, H. Luo, N. Samarth, J.K. Furdyna, W.A. Bonner, R.E. Nahory, Appl. Phys. Lett. 57, 2413 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    J. Ding, H. Jeon, A.V. Nurmikko, H. Luo, N. Samarth, J.K. Furdyna, Appl. Phys. Lett. 57, 2756 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    H. Jeon, J. Ding, A.V. Nurmikko, H. Luo, N. Samarth, J. Furdyna, Appl. Phys. Lett. 59, 1293 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Kawakami, S. Yamaguchi, Y.-H. Wu, K. Ichino, S. Fujita, S. Fujita, Jap. J. Appl. Phys. 30, L605 (1991)CrossRefGoogle Scholar
  28. 28.
    V.A. Stadnik, Optics Commun. 68, 445 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    J. Eichler, V. Glaw, A. Kummrow, V. Penschke, A. Wahi, J. Crystal Growth 101, 695 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    N.B. Singh, G.S. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S.P. Kelley, D.J. Knuteson, R. Holmstrom, K.L. Schepler, R. Peterson, M.M. Fejer, J.S. Harris, J. Crystal Growth 312, 1142 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    R. Triboulet, Semicon. Sci. Technol. 6, A18 (1991)ADSGoogle Scholar
  32. 32.
    C.-H. Su, S.L. Lehoczky, F.R. Szofran, J. Crystal Growth 101, 221 (1990)Google Scholar
  33. 33.
    C.-H. Su, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, M. Dudley, G.-D. Yao, W. Zhou, J. Crystal Growth 128, 627 (1993)Google Scholar
  34. 34.
    K. Chattopadhyay, S. Feth, H. Chen, A. Burger, C.-H. Su, J. Crystal growth 191, 377 (1998)Google Scholar
  35. 35.
    M.M. Faktor, I. Garrett, Growth of Crystals from the Vapour (Chapman and Hall, London, 1974)Google Scholar
  36. 36.
    D. Siche, H. Hartmann, K. Bottcher, E. Krause, Phys. Status Solidi B 194, 101 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    H. Hartmann, D. Siche, J. Crystal Growth 138, 260 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    C.-H. Su, M.A. George, W. Palosz, S. Feth, S.L. Lehoczky, J. Crystal Growth 213, 267 (2000)Google Scholar
  39. 39.
    C.-H. Su, Y.-G. Sha, M.P. Volz, P. Carpenter, S.L. Lehoczky, J. Crystal Growth 216, 104 (2000)Google Scholar
  40. 40.
    S.B. Mirov, V.V. Fedorov, D. Martyshkin, I.S. Moskalev, M. Mirov, S. Vasilyev, IEEE J. Select Topics Quantum Electron. 21, 1601719 (2015)CrossRefGoogle Scholar
  41. 41.
    A.E. Dormidonov, K.N. Firsov, E.M. Gavrishchuk, V.B. Ikonnikov, SYu. Kazantsev, I.G. Kononov, T.V. Kotereva, D.V. Savin, N.A. Timofeeva, Appl. Phys. B 122, 211 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    N.B. Singh, C.-H. Su, B. Arnold, F.-S. Choa, B. Cullum, Stacey Sova, and Christopher Cooper, Crystal Res. Tech. 180023 (2019)Google Scholar
  43. 43.
    A. Burger, K. Chattopadhyay, J.-O. Ndap, X. Ma, S.H. Morgan, C.I. Rablau, C.-H. Su, S. Feth, Ralph H. Page, Kathleen I. Schaffers, S.A. Payne, J. Crystal Growth 225 249 (2001)Google Scholar
  44. 44.
    R. Lauck, G. Muller-Vogt, W. Wendl, J. Crystal Growth 74, 520 (1986)ADSCrossRefGoogle Scholar
  45. 45.
    A.A. Chernov, J. Crystal Growth 24(25), 11 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    F. Rosenberger, M.C. Delong, D.W. Greenwell, J.M. Olson, G.H. Westphal, J. Crystal Growth 29, 49 (1975)ADSCrossRefGoogle Scholar
  47. 47.
    R.-F. Xiao, J.I. Alexander, F. Rosenberger, J. Crystal Growth 100, 313 (1990)ADSCrossRefGoogle Scholar
  48. 48.
    J.-S. Chen, N.-B. Ming, F. Rosenberger, J. Chem. Phys. 84, 2365 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    S.M. Johnson, S. Sen, W.H. Konkel, M.H. Kalisher, J. Vac. Sci. Technol. B9, 1987 (1991)Google Scholar
  50. 50.
    K. Sato, S. Adachi, J. Appl. Phys. 73, 926 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    H. Tai, S. Nakajima, S. Hori, J. Japan. Inst. Metals 40, 474 (1967)CrossRefGoogle Scholar
  52. 52.
    A. Ebina, E. Fukunaga, T. Takahashi, Phys. Rev. B 10, 2495 (1974)ADSCrossRefGoogle Scholar
  53. 53.
    J. Carides, A.G. Fischer, Solid State Commun. 2, 217 (1964)ADSCrossRefGoogle Scholar
  54. 54.
    L.A. Sysoev, E.K. Raiskin, V.R. Gur’ev, Inorg. Mater. 3, 341 (1967)Google Scholar
  55. 55.
    E. Kaldis, J. Crystal Growth 5, 376 (1969)ADSCrossRefGoogle Scholar
  56. 56.
    A. Catano, Z.K. Kun, J. Crystal Growth 33, 324 (1976)ADSCrossRefGoogle Scholar
  57. 57.
    E. Kaldis, J. Phys. Chem. Solids 26, 1701 (1965)ADSCrossRefGoogle Scholar
  58. 58.
    S. Parker, J. Crystal Growth 9, 177 (1971)ADSCrossRefGoogle Scholar
  59. 59.
    T. Koyama, T. Yodo, H. Oka, K. Yamashita, T. Yamasaki, J. Crystal Growth 91, 639 (1988)ADSCrossRefGoogle Scholar
  60. 60.
    K. Recker, R. Schoepe, J. Crystal Growth 9, 189 (1971)ADSCrossRefGoogle Scholar
  61. 61.
    S.G. Parker, J.E. Pinnell, Trans. Meta. Soc. AIME 245, 451 (1969)Google Scholar
  62. 62.
    H. Hartmann, J. Crystal Growth 42, 144 (1977)ADSCrossRefGoogle Scholar
  63. 63.
    S. Fujita, H. Mimoto, H. Takebe, T. Noguchi, J. Crystal Growth 47, 326 (1979)ADSCrossRefGoogle Scholar
  64. 64.
    T. Ohno, K. Kurisu, T. Taguchi, J. Crystal Growth 99, 737 (1990)ADSCrossRefGoogle Scholar
  65. 65.
    W. Piper, S.J. Polich, J. Appl. Phys. 32, 1278 (1961)ADSCrossRefGoogle Scholar
  66. 66.
    G.J. Russell, J. Woods, J. Crystal Growth 47, 647 (1979)ADSCrossRefGoogle Scholar
  67. 67.
    J. Morimoto, T. Ito, T. Yoshioka, T. Miyakawa, J. Crystal Growth 57, 362 (1982)ADSCrossRefGoogle Scholar
  68. 68.
    E.V. Markov, A.A. Davydov, Neorg. Mater. 7, 575 (1971)Google Scholar
  69. 69.
    A.A. Davydov, V.N. Ermolov, S.V. Neustroev, L.P. Pavlova, Neorg. Mater. 28, 42 (1992)Google Scholar
  70. 70.
    G. Cantwell, W.C. Harsch, H.L. Cotal, B.G. Markey, S.W.S. McKeever, J.E. Thomas, J. Appl. Phys. 71, 2931 (1992)ADSCrossRefGoogle Scholar
  71. 71.
    N. Hemmat, M. Weinstein, J. Electrochem. Soc. 114, 851 (1967)CrossRefGoogle Scholar
  72. 72.
    T. Taguchi, S. Fujita, T. Inuishi, J. Crystal Growth 45, 204 (1978)ADSCrossRefGoogle Scholar
  73. 73.
    E. Anderson, H.-Y. Cheng, M.J. Edgell, Mater. Res. Soc. Symp. Proc. 152, 51 (1989)CrossRefGoogle Scholar
  74. 74.
    H.-Y. Cheng, E. Anderson, J. Crystal Growth 96, 756 (1989)ADSCrossRefGoogle Scholar
  75. 75.
    F. Allegretti, A. Carrara, S. Pizzini, J. Crystal Growth 128, 646 (1993)ADSCrossRefGoogle Scholar
  76. 76.
    C.-H. Su, Y.-G. Sha, K. Mazuruk, S.L. Lehoczky, H.-C. Liu, R. Fang, R.F. Brebrick, J. Crystal Growth, 736 (1996)Google Scholar
  77. 77.
    C.-H. Su, Y.-G. Sha, M.P. Volz, D.C. Gillies, F.R. Szofran, S.L. Lehoczky, W. Zhou, M. Dudley, H.-C. Liu, R.F. Brebrick, J.C. Wang, Proc. AIAA 32nd Aerospace Sciences Meeting, paper 94–0564 (1994)Google Scholar
  78. 78.
    S. Ching-Hua, Y.-G. Sha, Curr. Topics Crystal Growth Res. 2, 401 (1995)Google Scholar
  79. 79.
    L. Clark, J. Woods, J. Crystal Growth 3(4), 126 (1968)ADSCrossRefGoogle Scholar
  80. 80.
    G.J. Russell, N.F. Thompson, J. Woods, J. Crystal Growth 71, 621 (1985)ADSCrossRefGoogle Scholar
  81. 81.
    P.D. Fochs, W. George, P.D. Augustus, J. Crystal Growth 3(4), 122 (1968)ADSCrossRefGoogle Scholar
  82. 82.
    K.F. Burr, J. Woods, J. Crystal Growth 9, 183 (1971)ADSCrossRefGoogle Scholar
  83. 83.
    J.R. Cutter, J. Woods, J. Crystal Growth 47, 405 (1979)ADSCrossRefGoogle Scholar
  84. 84.
    J.R. Cutter, G.J. Russell, J. Woods, J. Crystal Growth 32, 179 (1976)ADSCrossRefGoogle Scholar
  85. 85.
    K. Mochizuki, J. Crystal Growth 58, 87 (1982)ADSCrossRefGoogle Scholar
  86. 86.
    K. Mochizuki, K. Igaki, J. Crystal Growth 45, 218 (1978)ADSCrossRefGoogle Scholar
  87. 87.
    Y. Morimoto, I. Igarashi, H. Sugahara, S. Nasu, J. Non-Cryst, Solids 139, 35 (1992)Google Scholar
  88. 88.
    K. Grasza, U. Zuzga-Grasza, A. Jedrzejczak, R.R. Galazka, J. Majewski, A. Szadkowski, E. Grodzicka, J. Crystal Growth 123, 519 (1992)Google Scholar
  89. 89.
    A.S. Jordan, L. Derick, J. Electrochem. Soc. 116, 1424 (1969)CrossRefGoogle Scholar
  90. 90.
    T. Yoshioka, J. Crystal Growth 115, 705 (1191)Google Scholar
  91. 91.
    H. Wiedemeier, F.C. Klaessig, E.A. Irene, S.J. Wey, J. Crystal Growth 31, 36 (1975)ADSCrossRefGoogle Scholar
  92. 92.
    H. Wiedemeier, H. Sadeek, F.C. Klaessig, M. Norek, R. Santandrea, J. Electrochem. Soc. 124, 1095 (1977)ADSCrossRefGoogle Scholar
  93. 93.
    H. Wiedemeier, NASA Conf. Publ. 3272, 263 (1993)Google Scholar
  94. 94.
    L. van den Berg, W.F. Schnepple, Nucl. Inst. Meth. Phys. Res. A283, 335 (1989)ADSCrossRefGoogle Scholar
  95. 95.
    P. Siffert, B. Biglari, M. Samimi, M. Hage-Ali, J.M. Koebel, R. Nitsche, M. Bruder, R. Dian, R. Schdnholz, Nucl. Inst. Meth. Phys. Res. A283, 363 (1989)ADSCrossRefGoogle Scholar
  96. 96.
    Manufacturing in Space: Processing Problems and Advances, V. S. Avduyevsky Editor, MIR Publishers, Moscow (1985)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.HuntsvilleUSA

Personalised recommendations