Advertisement

Active Nanoobjects, Neutrino and Higgs Boson in a Fractal Models of the Universe

  • Valeriy S. AbramovEmail author
Conference paper
  • 13 Downloads
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Theoretically the relationships of the main parameters of active nanoobjects with the Higgs boson and the Higgs field in a fractal models of the Universe are investigated. Neutrino, nanoparticles, atomic defects, quantum dots can be as active nanoobjects. The neutrino is characterized by the phenomenon of hysteresis. The estimation of the neutrino rest mass is obtained. Using the example of a silica nanoparticle, trapped in an optical trap and placed in a vacuum, estimates of the limiting frequency of rotation of a particle in a laser field with circular polarization and the size of the nanoparticle are obtained. Using the example of atomic defects in boron nitride nanotubes, we obtained estimates of the wavelengths of quantum emission of separate photons. Super-nonradiative states of physical fields are investigated. The properties of nanoparticles depend on pressure, state of physical vacuum and cosmological parameters.

Keywords

Active nanoobjects Neutrino Higgs boson Higgs field Fractal models of the Universe Optical traps Nanoparticles Frequency of rotation Physical vacuum Super-nonradiative states 

References

  1. 1.
    A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers. World Scientific Publishing Company (2006)Google Scholar
  2. 2.
    D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219–221 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    Y.S. Kivshar, N.N. Rozanov (Eds.), Nonlinearities in Periodic Structures and Metamaterials (Fizmatlit, Moscow, 2014)Google Scholar
  4. 4.
    V.V. Samartsev, V.G. Nikiforov, Femtosecond Laser Spectroscopy, ed. by M. Trovant (2017)Google Scholar
  5. 5.
    R. Reimann, M. Doderer, E. Hebestreit et al., GHz rotation of an optically trapped nanoparticle in vacuum. arXiv:1803.11160v2 [physics.optics] 21 Jul 2018, 5 p
  6. 6.
    J. Ahn, Z. Xu, J. Bang et al., Stable emission and fast optical modulation of quantum emitters in boron nitride nanotubes. arXiv:1806.06146v1 [quant-ph] 15 Jun 2018, 4 p
  7. 7.
    V.S. Abramov, Active nanoelements with variable parameters in fractal quantum systems. Bull. Rus. Acad. Sci. Phys. 82(8), 1062–1067 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    V. Abramov, Higgs field and cosmological parameters in the fractal quantum system, in XI international symposium on photon echo and coherent spectroscopy (PECS-2017). EPJ Web Conf., vol. 161, no. 02001, 2 p (2017)CrossRefGoogle Scholar
  9. 9.
    V.S. Abramov, Cosmological parameters and Higgs boson in a fractal quantum system. CMSIM J. 4, 441–455 (2017)MathSciNetGoogle Scholar
  10. 10.
    V.S. Abramov, Anisotropic model and transient signals from binary cosmological objects: black holes, neutron stars. Bull. Donetsk Nat. Univ. A, 1, 55–68 (2018)Google Scholar
  11. 11.
    V.S. Abramov, Superradiance of gravitational waves, relic photons from binary black holes, neutron stars. Bull. Rus. Acad. Sci. Phys. 83(3), 364–369 (2019)ADSCrossRefGoogle Scholar
  12. 12.
    V.S. Abramov, Gravitational waves, relic photons and Higgs boson in a fractal models of the Universe, in “11th Chaotic Modeling and Simulation International Conference”. Springer Proceedings in Complexity, ed. by C.H. Skiadas, I. Lubashevsky (Springer Nature Switzerland AG, 2019), pp. 1–14Google Scholar
  13. 13.
    D. Hooper, The empirical case for 10-GeV dark matter. Dark Universe 1, 1–23 (2012)CrossRefGoogle Scholar
  14. 14.
    P.K. Suh, Dark matter and energy in the universe of symmetric physics. IJARPS 5, 19–34 (2018)Google Scholar
  15. 15.
    O.P. Abramova, A.V. Abramov, Attractors and deformation field in the coupled fractal multilayer nanosystem. CMSIM J. 2, 169–179 (2017)Google Scholar
  16. 16.
    O.P. Abramova, Mutual influence of attractors and separate stochastic processes in a coupled fractal structures. Bull. Donetsk Nat. Univ. A, 1, 50–60 (2017)Google Scholar
  17. 17.
    O.P. Abramova, A.V. Abramov, Effect of ordering of displacement fields operators of separate quantum dots, elliptical cylinders on the deformation field of coupled fractal structures, in “11th Chaotic Modeling and Simulation International Conference”. Springer Proceedings in Complexity, ed. by C.H. Skiadas, I. Lubashevsky (Springer Nature Switzerland AG, 2019), pp. 15–27Google Scholar
  18. 18.
    R.H. Dicke, Coherent in spontaneous radiation processes. Phys. Rev. 93(1), 99–110 (1954)ADSCrossRefGoogle Scholar
  19. 19.
    R. Bonifacio, P. Schwendimann, F. Haake, Quantum statistical theory of superradiance I. Phys. Rev. A 4(1), 302–313 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    R. Bonifacio, P. Schwendimann, F. Haake, Quantum statistical theory of superradiance II. Phys. Rev. A 4(3), 854–864 (1971)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81(8), 1562–1567 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett. 89(1(011301)), 1–6 (2002)Google Scholar
  23. 23.
    R.M. Barnett et al., Review of particle physics. Phys. Rev. D 54, 1 (1996)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Carroll, The Particle at the End of the Universe. Publ. by Dutton, New York (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Donetsk Institute for Physics and Engineering named after A.A. GalkinDonetskUkraine

Personalised recommendations