Advertisement

Gravitational Decoupling

  • Jorge OvalleEmail author
  • Roberto Casadio
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Throughout this book, we have described in detail how to implement the MGD formalism in order to extend GR solutions for perfect fluids and the vacuum into the BW domain. We have tested the effectiveness and usefulness of this scheme in the extra-dimensional scenario, but the fundamental reason why it works the way it does was not yet explained. This is precisely the objective of this final chapter. We will see that the MGD scheme has to do with the decoupling of the gravitational sources in the Einstein field equations [1, 2], something which is not trivial, given the complexity and non-linearity of that system of equations.

References

  1. 1.
    J. Ovalle, Decoupling gravitational sources in GR: from perfect to anisotropic fluids. Phys. Rev. D 95, 104019 (2017)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Ovalle, Decoupling gravitational sources in GR: the extended case. Phys. Lett. B 787 (2019)Google Scholar
  3. 3.
    C. Las Heras, P. Leon, Using MGD gravitational decoupling to extend the isotropic solutions of Einstein equations to the anisotropical domain. Fortschr. Phys. 1800036 (2018)Google Scholar
  4. 4.
    A. Fernandes-Silva, R. da Rocha, Gregory-Laflamme analysis of MGD black strings. Eur. Phys. J. C 78, 271 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Anisotropic solutions by gravitational decoupling. Eur. Phys. J. C 78, 122 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    L. Gabbanelli, A. Rincón, C. Rubio, Gravitational decoupled anisotropies in compact stars. Eur. Phys. J. C 78, 370 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    E. Contreras, P. Bargueño, Minimal geometric deformation decoupling in \(2+1\) dimensional space-times. Eur. Phys. J. C 78, 558 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    M. Sharif, S. Sadiq, Gravitational decoupled anisotropic solutions for cylindrical geometry. Eur. Phys. J. Plus 133, 245 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Sharif, S. Sadiq, Gravitational decoupled charged anisotropic spherical solutions. Eur. Phys. J. C 78, 410 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Grigoris Panotopoulos, Ángel Rincón, Minimal geometric deformation in a cloud of strings. Eur. Phys. J. C 78, 851 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    M. Sharif, S. Saba, Gravitational decoupled anisotropic solutions in \(f(\cal{G})\) gravity. Eur. Phys. J. C 78, 921 (2018)Google Scholar
  12. 12.
    Ernesto Contreras, Pedro Bargue, Minimal geometric deformation in asymptotically (A-)dS space-times and the isotropic sector for a polytropic black hole. Eur. Phys. J. C 79, 985 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Milko Estrada, Francisco Tello-Ortiz, A new family of analytical anisotropic solutions by gravitational decoupling. Eur. Fis. J. Plus 133, 453 (2018)CrossRefGoogle Scholar
  14. 14.
    E. Morales, F. Tello-Ortiz, Charged anisotropic compact objects by gravitational decoupling. Eur. Phys. J. C 78(8), 618 (2018)Google Scholar
  15. 15.
    R. Casadio, P. Nicolini, R. da Rocha, GUP Hawking fermions from MGD black holes. Class. Quant. Grav. 35, 185001 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    A. Fernandes-Silva, A.J. Ferreira-Martins, R. da Rocha, The extended minimal geometric deformation of SU(N) dark glueball condensates. Eur. Phys. J. C 78, 631 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, Black holes by gravitational decoupling. Eur. Phys. J. C 78, 960 (2018)Google Scholar
  18. 18.
    E. Contreras, Minimal geometric deformation: the inverse problem. Eur. Phys. J. C 78, 678 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    R. Pérez, A new anisotropic solution by MGD gravitational decoupling. Eur. Phys. J. Plus 133, 244 (2018). [Erratum: Eur. Phys. J. Plus 134(7), 369 (2019)]Google Scholar
  20. 20.
    E. Morales, F. Tello-Ortiz, Compact anisotropic models in general relativity by gravitational decoupling. Eur. Phys. J. C 78, 841 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    M. Estrada, R. Prado, The gravitational decoupling method: the higher dimensional case to find new analytic solutions. Eur. Phys. J. Plus 134,168 (2019)Google Scholar
  22. 22.
    J. Ovalle, A. Sotomayor, A simple method to generate exact physically acceptable anisotropic solutions in general relativity. Eur. Phys. J. Plus 133, 428 (2018)CrossRefGoogle Scholar
  23. 23.
    G. Panotopoulos, Á. Rincón, Minimal geometric deformation in a cloud of strings. Eur. Phys. J. C 78, 851 (2018)Google Scholar
  24. 24.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, Einstein-Klein-Gordon system by gravitational decoupling. EPL 124, 20004 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    Ernesto Contreras, Gravitational decoupling in \(2+1\) dimensional space-times with cosmological term. Class. Quant. Grav. 36, 095004 (2019)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Fernandes-Silva, A.J. Ferreira-Martins, R. da Rocha, Extended quantum portrait of MGD black holes and information entropy. Phys. Lett. B 791, 323 (2019)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    S.K. Maurya, F. Tello-Ortiz, Generalized relativistic anisotropic compact star models by gravitational decoupling. Eur. Phys. J. C 79, 85 (2019)ADSCrossRefGoogle Scholar
  28. 28.
    E. Contreras, A. Rincón, P. Bargueño, A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach. Eur. Phys. J. C 79, 216 (2019)ADSCrossRefGoogle Scholar
  29. 29.
    E. Contreras, P. Bargueño, Extended gravitational decoupling in \(2+1\) dimensional space-times. Class. Quant. Grav. 36, 215009 (2019)ADSCrossRefGoogle Scholar
  30. 30.
    L. Gabbanelli, J. Ovalle, A. Sotomayor, Z. Stuchlik, R. Casadio, A causal Schwarzschild-de Sitter interior solution by gravitational decoupling. Eur. Phys. J. C 79, 486 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    M. Estrada, A way of decoupling gravitational sources in pure Lovelock gravity. Eur. Phys. J. C 79, 918 (2019)ADSCrossRefGoogle Scholar
  32. 32.
    J. Ovalle, C. Posada, Z. Stuchlik, Anisotropic ultracompact Schwarzschild star by gravitational decoupling. Class. Quant. Grav. 36, 205010 (2019)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    S. K. Maurya F. Tello-Ortiz, Charged anisotropic compact star in \(f(R,\cal{T})\) gravity: a minimal geometric deformation gravitational decoupling approach. arXiv:1905.13519 [gr-qc]
  34. 34.
    M. Sharif, A. Waseem, Effects of charge on gravitational decoupled anisotropic solutions in \(f(R)\) gravity. Chin. J. Phys. 60, 426 (2019)MathSciNetCrossRefGoogle Scholar
  35. 35.
    S. Hensh, Z. Stuchlik, Anisotropic Tolman VII solution by gravitational decoupling. Eur. Phys. J. C 79, 834 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    F.X. Cedeño, E. Contreras, Gravitational decoupling in cosmology. arXiv:1907.04892 [gr-qc]
  37. 37.
    P. León, A. Sotomayor, Braneworld Gravity under gravitational decoupling. Fortschr. Phys. 1900077 (2019)Google Scholar
  38. 38.
    V.A. Torres-Snchez, E. Contreras, Anisotropic neutron stars by gravitational decoupling. Eur. Phys. J. C 79, 829 (2019)ADSCrossRefGoogle Scholar
  39. 39.
    A. Rincón, L. Gabbanelli, E. Contreras, F. Tello-Ortiz, Minimal geometric deformation in a Reissner-Nordstrom background. Eur. Phys. J. C 79, 873 (2019)ADSCrossRefGoogle Scholar
  40. 40.
    M. Sharif, S. Sadiq, 2+1-dimensional gravitational decoupled anisotropic solutions. Chin. J. Phys. 60, 279 (2019)MathSciNetCrossRefGoogle Scholar
  41. 41.
    K.N. Singh, S.K. Maurya, M.K. Jasim, F. Rahaman, Minimally deformed anisotropic model of class one space-time by gravitational decoupling. Eur. Phys. J. C 79 851 (2019)Google Scholar
  42. 42.
    M. Sharif, A. Waseem, Anisotropic spherical solutions by gravitational decoupling in \(f(R)\) gravity. Ann. Phys. 405, 14 (2019)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    S.K. Maurya, A completely deformed anisotropic class one solution for charged compact star: a gravitational decoupling approach. Eur. Phys. J. C 79, 958 (2019)ADSCrossRefGoogle Scholar
  44. 44.
    P. Burikham, T. Harko, M.J. Lake, Mass bounds for compact spherically symmetric objects in generalized gravity theories. Phys. Rev. D 94(6), 064070 (2016)Google Scholar
  45. 45.
    L. Herrera, N.O. Santos, Local anisotropy in self-gravitating systems. Phys. Rep. 286, 53 (1997)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    M.K. Mak, T. Harko, Anisotropic stars in GR. Proc. R. Soc. Lond. A 459, 393 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    C. Germani, R. Maartens, Stars in the braneworld. Phys. Rev. D 64, 124010 (2001)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    N. Dadhich, R. Maartens, P. Papadopoulos, V. Rezania, Black holes on the brane. Phys. Lett. B 487, 1–6 (2000)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    R. Casadio, A. Fabbri, L. Mazzacurati, New black holes in the brane world? Phys. Rev. D 65, 084040 (2002)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    P. Figueras, T. Wiseman, Gravity and large black holes in Randall-Sundrum II braneworlds. Phys. Rev. Lett. 107, 081101 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    A. Einstein, Ann. Math. 40, 922–936 (1939)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of PhysicsSilesian University in OpavaOpavaCzech Republic
  2. 2.Dipartimento di Fisica e AstronomiaUniversity of BolognaBolognaItaly

Personalised recommendations