Stellar Distributions

  • Jorge OvalleEmail author
  • Roberto Casadio
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


It is notorious that exact solutions representing the interior of a compact object are hard to find in GR [1], even for the simple case of a static perfect fluid. Only very few of them are then also of physical interest [2]. Hence it is not surprising that finding exact solutions in the BW, where new terms arise on the brane because gravity propagates in the bulk, becomes an extremely complicated task. The reason is that the (four-dimensional) non-locality makes the BW equations an open system. As we have seen in the previous chapter, the non-locality derives from the projection of the bulk Weyl tensor onto the brane, and this leads to a very complicated system of equations which are particularly difficult to study for non-uniform matter distributions.


  1. 1.
    D. Kramer, H. Stephani, E. Herlt, M. MacCallum, Exact Solutions of Einstein’s Field Equations(Cambridge University Press, Cambridge, 1980)Google Scholar
  2. 2.
    M.S.R. Delgaty, K. Lake, Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput. Phys. Commun. 115 395–415 (1998)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Viznyuk, Y. Shtanov, Spherically symmetric problem on the brane and galactic rotation curves. Phys. Rev. D 76, 064009 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    J. Campbell, A Course of Differential Geometry (Clarendon, Oxford, 1926); L. Magaard, Ph.D. thesis, University of Kiel, 1963Google Scholar
  5. 5.
    S.S. Seahra, P.S. Wesson, Application of the Campbell-Magaard theorem to higher-dimensional physics. Class. Quant. Grav. 20, 1321 (2003)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M.D. Maia, Hypersurfaces of Five Dimensional Space-times. arXiv:gr-qc/9512002v2
  7. 7.
    F. Dahia, C. Romero, On the embedding of branes in five-dimensional spaces. Class. Quant. Grav. 21, 927–934 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Ovalle, Searching exact solutions for compact stars in braneworld: a conjecture. Mod. Phys. Lett. A 23, 3247 (2008)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Dadhich, R. Maartens, P. Papadopoulos, V. Rezania, Black holes on the brane. Phys. Lett. B 487, 1–6 (2000)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Casadio, A. Fabbri, L. Mazzacurati, New black holes in the brane world? Phys. Rev. D 65, 084040 (2002)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    P. Figueras, T. Wiseman, Gravity and large black holes in Randall-Sundrum II braneworlds. Phys. Rev. Lett. 107, 081101 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    D.-C. Dai, D. Stojkovic, Analytic solution for a static black hole in RSII model. Phys. Lett. B 704, 354 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    S. Abdolrahimi, C. Cattoen, D.N. Page, S. Yaghoobpour-Tari, Large Randall-Sundrum II black holes. Phys. Lett. B 720, 405 (2013)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Heintzmann, New exact static solutions of Einsteins field equations. Z. Phys. 228, 489 (1969)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Á. László, Gergely: black holes and dark energy from gravitational collapse on the brane. JCAP 0702, 027 (2007)Google Scholar
  16. 16.
    N. Deruelle, Stars on branes: the view from the brane. arXiv:gr-qc/0111065v1
  17. 17.
    R. Casadio, J. Ovalle, Brane-world stars and (microscopic) black holes. Phys. Lett. B 715, 251 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    R. Casadio, J. Ovalle, Brane-world stars from minimal geometric deformation, and black holes. Gen. Relat. Grav. 46, 1669 (2014)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972), p. 330Google Scholar
  20. 20.
    C. Germani, R. Maartens, Stars in the braneworld. Phys. Rev. D 64, 124010 (2001)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Ovalle, The Schwarzschild’s braneworld solution. Mod. Phys. Lett. A 25, 3323 (2010)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M.C. Durgapal, R.S. Fuloria, Analytic relativistic model for a superdense star. Gen. Rel. Grav. 17, 671 (1985)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939)ADSCrossRefGoogle Scholar
  24. 24.
    C.G. Boehmer, T. Harko, F.S.N. Lobo, Solar system tests of brane world models. Class. Quant. Grav. 25, 045015 (2008)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Kotrlova, Z. Stuchlik, G. Török, Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models. Class. Quant. Grav. 25 225016 (2008)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    L.Á. Gergely, Z. Keresztes, M. Dwornik, Second-order light deflection by tidal charged black holes on the brane. Class. Quant. Grav. 26, 145002 (2009)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Z. Horváth, L.Á. Gergely, D. Hobill, Image formation in weak gravitational lensing by tidal charged black holes. Class. Quant. Grav. 27, 235006 (2010)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Z. Horváth, L.Á. Gergely, Astron. Notes (Astronomische Nachrichten) 334, 1047 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    C.S.J. Pun, Z. Kovacs, T. Harko, Thin accretion disks in \(f(R)\) modified gravity models. Phys. Rev. D 78, 024043 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    J. Ovalle, L.A. Gergely, R. Casadio, Brane-world stars with solid crust and vacuum exterior. Class. Quant. Grav. 32, 045015 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    L.Á. Gergely, A Homogeneous brane world universe. Class. Quant. Grav. 21, 935 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    L.Á. Gergely, R. Maartens, Brane-world generalizations of the Einstein static universe. Class. Quant. Grav. 19, 213 (2002)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Visser, General relativistic energy conditions: The Hubble expansion in the epoch of galaxy formation. Phys. Rev. D 56, 7578 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    C.G. Boehmer, G. De Risi, T. Harko, F.S.N. Lobo, Classical tests of GR in brane world models. Class. Quant. Grav. 27, 185013 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    R. Casadio, J. Ovalle, R. da Rocha, Classical tests of GR: brane-world sun from minimal geometric deformation. Europhys. Lett. 110, 40003 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, The role of exterior Weyl fluids on compact stellar structures in Randall-Sundrum gravity. Class. Quant. Grav. 30, 175019 (2013)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    I.I. Shapiro et al., Fourth test of GR—new radar result. Phys. Rev. Lett. 26, 1132 (1971)ADSCrossRefGoogle Scholar
  38. 38.
    R.D. Reasenberg, I.I. Shapiro, P.E. MacNeil, R.B. Goldstein, J.C. Breidenthal, J.P. Brenkle, D.L. Cain, T.M. Kaufman et al. Viking relativity experiment: verification of signal retardation by solar gravity. Astrophys. J. 234 L219–L221 (1979)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of PhysicsSilesian University in OpavaOpavaCzech Republic
  2. 2.Dipartimento di Fisica e AstronomiaUniversity of BolognaBolognaItaly

Personalised recommendations