Advertisement

The Minimal Geometric Deformation

  • Jorge OvalleEmail author
  • Roberto Casadio
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

General Relativity (GR) in its century of existence represents, without a doubt, one of the most important achievements of human knowledge. The predictions made by this theory, like the perihelion shift of Mercury, light deflection and gravitational lensing, the gravitational redshift and time delay, black holes and gravitational waves—just to mention some of the most remarkable ones, have given it the honours which deserves as one of the fundamental theories of Physics (for a recent review on experimental tests of GR see [1] and references therein).

References

  1. 1.
    C.M. Will, The confrontation between GR and experiment. Living Rev. Rel 9 (2006)Google Scholar
  2. 2.
    C.F. Sopuerta, Probing the strong gravity regime with eLISA: progress on EMRIs, arXiv:1210.0156 [gr-qc]
  3. 3.
    I. Ben-Dayan, M. Gasperini, G. Marozzi, F. Nugier, G. Veneziano, Average and dispersion of the luminosity-redshift relation in the concordance model. JCAP 1306, 002 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    O. Umeh, C. Clarkson, R. Maartens, Nonlinear general relativistic corrections to redshift space distortions, gravitational lensing magnification and cosmological distances. Class. Quant. Grav. 31, 202001 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    P.A.R. Ade et al., (Planck Collaboration): Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571 A1 (2014)Google Scholar
  6. 6.
    C.L. Bennett et al., (WMAP Collaboration): nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. 208, 20 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K. Akiyama et al., (EHT collaboration): Event horizon telescope. Astrophys. J. 875 (2-19) L1Google Scholar
  8. 8.
    K. Akiyama et al., (EHT collaboration): Event horizon telescope. Astrophys. J. 875 (2-19) L4Google Scholar
  9. 9.
    B.P. Abbott et al., (LIGO and VIRGO collaboration). Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    B.P. Abbott et al., (LIGO and VIRGO collaboration). Phys. Rev. Lett. 119, 141101 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    B.P. Abbott et al., (LIGO and VIRGO collaboration). J. Astrophys. 851, L35 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    M. Aguilar et al., (AMS Collaboration): First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110 141102 (2013)Google Scholar
  13. 13.
    R. Agnese et al., (CDMS Collaboration): Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111(25), 251301 (2013)Google Scholar
  14. 14.
    J. Ovalle, Searching exact solutions for compact stars in braneworld: a conjecture. Mod. Phys. Lett. A 23, 3247 (2008)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Ovalle, Braneworld stars: anisotropy minimally projected onto the brane, in Gravitation and Astrophysics (ICGA9), ed. by J. Luo (World Scientific, Singapore, 2010), pp. 173–182CrossRefGoogle Scholar
  16. 16.
    J. Ovalle, Effects of density gradients on braneworld stars, in Proceedings of the Twelfth Marcel Grossmann Meeting on GR, ed. by T. Damour, R. T. Jantzen, R. Ruffini (World Scientific, Singapore, 2012), pp. 2243–2245. ISBN 978-981-4374-51-4Google Scholar
  17. 17.
    R. Casadio, J. Ovalle, Brane-world stars and (microscopic) black holes. Phys. Lett. B 715, 251 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J. Ovalle, F. Linares, Tolman IV solution in the Randall-Sundrum braneworld. Phys. Rev. D 88(2013), 104026 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, The role of exterior Weyl fluids on compact stellar structures in Randall-Sundrum gravity. Class. Quant. Grav. 30, 175019 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    R. Casadio, J. Ovalle, Brane-world stars from minimal geometric deformation, and black holes. Gen. Relat. Grav. 46, 1669 (2014)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Casadio, J. Ovalle, R. da Rocha, Black strings from minimal geometric deformation in a variable tension brane-world. Class. Quant. Grav. 30, 175019 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    R. Casadio, J. Ovalle, R. da Rocha, Classical tests of GR: brane-world sun from minimal geometric deformation. Europhys. Lett. 110, 40003 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    R. Casadio, J. Ovalle, R. da Rocha, The minimal geometric deformation approach extended. Class. Quant. Grav. 32, 215020 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Ovalle, Extending the geometric deformation: new black hole solutions, in International Journal of Modern Physics: Conference Series, vol. 41 (2016), p. 1660132Google Scholar
  25. 25.
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    L. Randall, R. Sundrum, An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, New dimensions at a millimeter to a fermi and superstrings at a TeV. Phys. Lett. B 436, 257 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    R. Maartens, Brane world gravity. Living Rev. Rel. 7, 7 (2004)CrossRefGoogle Scholar
  30. 30.
    R. Maartens, K. Koyama, Brane-world gravity. Living Rev. Rel. 13, 5 (2010)CrossRefGoogle Scholar
  31. 31.
    G. Aad et al., (ATLAS Collaboration): Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    S. Chatrchyan et al., (CMS Collaboration): Search for narrow resonances and quantum black holes in inclusive and \(b\)-tagged dijet mass spectra from \(pp\) collisions at \(\sqrt{s}=7\) TeV. JHEP 1301, 013 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    L.A. Gergely, T. Harko, M. Dwornik, G. Kupi, Z. Keresztes, Galactic rotation curves in brane world models. Mon. Not. Roy. Astron. Soc. 415, 3275 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    T. Shiromizu, K.I. Maeda, M. Sasaki, The Einstein equation on the 3-brane world. Phys. Rev. D 62, 024012 (2000)Google Scholar
  35. 35.
    W. Israel, Singular hypersurfaces and thin shells in GR. Nuovo Cim. B 44, 1 (1966); Nuovo Cim. B 48, 463 (1966)Google Scholar
  36. 36.
    N. Arkani-Hamed, M. Schmaltz, Hierarchies without symmetries from extra dimensions. Phys. Rev. D 61, 033005 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    R. Casadio, L. Mazzacurati, Bulk shape of brane world black holes. Mod. Phys. Lett. A 18, 651 (2003). R. Casadio, O. Micu, Exploring the bulk of tidal charged micro-black holes. Phys. Rev. D 81, 104024 (2010)Google Scholar
  38. 38.
    R. da Rocha, J.M. Hoff da Silva, Black string corrections in variable tension braneworld scenarios. Phys. Rev. D 85, 046009 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J. Campbell, A Course of Differential Geometry (Clarendon, Oxford, 1926); L. Magaard, Ph.D. thesis, University of Kiel, 1963Google Scholar
  40. 40.
    M.D. Maia, Hypersurfaces of five dimensional space-times, arXiv:gr-qc/9512002v2
  41. 41.
    K. Koyama, R. Maartens, Structure formation in the DGP cosmological model. JCAP 01, 016 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    A. Viznyuk, Y. Shtanov, Spherically symmetric problem on the brane and galactic rotation curves. Phys. Rev. D 76, 064009 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    J. Ovalle, Non-uniform braneworld stars: an exact solution. Int. J. Mod. Phys. D 18, 837 (2009)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    C. Germani, R. Maartens, Stars in the braneworld. Phys. Rev. D 64, 124010 (2001)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    N. Dadhich, R. Maartens, P. Papadopoulos, V. Rezania, Black holes on the brane. Phys. Lett. B 487, 1 (2000)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    R. Casadio, A. Fabbri, L. Mazzacurati, New black holes in the brane world? Phys. Rev. D 65, 084040 (2002)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    P. Figueras, T. Wiseman, Gravity and large black holes in Randall-Sundrum II braneworlds. Phys. Rev. Lett. 107, 081101 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    J. Ovalle, F. Linares, Tolman IV solution in the Randall-Sundrum braneworld. Phys. Rev. D 88, 104026 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    L.A. Gergely, Black holes and dark energy from gravitational collapse on the brane. JCAP 02, 027 (2007)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of PhysicsSilesian University in OpavaOpavaCzech Republic
  2. 2.Dipartimento di Fisica e AstronomiaUniversity of BolognaBolognaItaly

Personalised recommendations