Advertisement

Terrain-Like Graphs: PTASs for Guarding Weakly-Visible Polygons and Terrains

  • Stav AshurEmail author
  • Omrit Filtser
  • Matthew J. Katz
  • Rachel Saban
Conference paper
  • 90 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11926)

Abstract

A graph \(G = (V,E)\) is terrain-like if one can assign a unique integer from the range [1..|V|] to each vertex in V, such that, if both \(\{i,k\}\) and \(\{j,l\}\) are in E, for any \(i< j< k < l\), then so is \(\{i,l\}\). We present a local-search-based PTAS for minimum dominating set in terrain-like graphs. Then, we observe that, besides the visibility graphs of x-monotone terrains which are terrain-like, so are the visibility graphs of weakly-visible polygons and weakly-visible terrains, immediately implying a PTAS for guarding the vertices of such a polygon or terrain from its vertices. We also present PTASs for continuously guarding the boundary of a WV-polygon or WV-terrain, either from its vertices, or, for a WV-terrain, from arbitrary points on the terrain. Finally, we compare between terrain-like graphs and non-jumping graphs, and also observe that both families admit PTASs for maximum independent set.

References

  1. 1.
    Ahmed, A.R., et al.: L-graphs and monotone L-graphs. arXiv:1703.01544 (2017)
  2. 2.
    Bandyapadhyay, S., Maheshwari, A., Mehrabi, S., Suri, S.: Approximating dominating set on intersection graphs of rectangles and L-frames. In: 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, 27–31 August 2018, Liverpool, UK, pp. 37:1–37:15 (2018).  https://doi.org/10.4230/LIPIcs.MFCS.2018.37
  3. 3.
    Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algorithm for optimal 1.5D terrain guarding. SIAM J. Comput. 36(6), 1631–1647 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhattacharya, P., Ghosh, S.K., Pal, S.: Constant approximation algorithms for guarding simple polygons using vertex guards. arXiv:1712.05492 (2017)
  5. 5.
    Bhattacharya, P., Ghosh, S.K., Roy, B.: Approximability of guarding weak visibility polygons. Discrete Appl. Math. 228, 109–129 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Catanzaro, D., et al.: Max point-tolerance graphs. Discrete Appl. Math. 216, 84–97 (2017).  https://doi.org/10.1016/j.dam.2015.08.019MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discrete Comput. Geom. 48(2), 373–392 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geometric set cover. Discrete Comput. Geom. 37(1), 43–58 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Correa, J.R., Feuilloley, L., Pérez-Lantero, P., Soto, J.A.: Independent and hitting sets of rectangles intersecting a diagonal line: algorithms and complexity. Discrete Comput. Geom. 53(2), 344–365 (2015).  https://doi.org/10.1007/s00454-014-9661-yMathSciNetCrossRefGoogle Scholar
  10. 10.
    Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Elbassioni, K., Krohn, E., Matijević, D., Mestre, J., Ševerdija, D.: Improved approximations for guarding 1.5-dimensional terrains. Algorithmica 60(2), 451–463 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Friedrichs, S., Hemmer, M., King, J., Schmidt, C.: The continuous 1.5D terrain guarding problem: discretization, optimal solutions, and PTAS. J. Comput. Geom. 7(1), 256–284 (2016). http://jocg.org/index.php/jocg/article/view/242
  13. 13.
    Ghosh, S.K., Maheshwari, A., Pal, S.P., Saluja, S., Madhavan, C.E.V.: Characterizing and recognizing weak visibility polygons. Comput. Geom. 3, 213–233 (1993).  https://doi.org/10.1016/0925-7721(93)90010-4MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: Guarding terrains via local search. J. Comput. Geom. 5(1), 168–178 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking the logn barrier. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 243–254. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15775-2_21CrossRefzbMATHGoogle Scholar
  16. 16.
    King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 629–640. Springer, Heidelberg (2006).  https://doi.org/10.1007/11682462_58CrossRefGoogle Scholar
  17. 17.
    King, J., Krohn, E.: Terrain guarding is NP-hard. SIAM J. Comput. 40(5), 1316–1339 (2011).  https://doi.org/10.1137/100791506MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 17–22. ACM (2009)Google Scholar
  19. 19.
    Soto, M., Caro, C.T.: \(p\)-box: a new graph model. Discrete Math. Theoret. Comput. Sci. 17(1), 169–186 (2015). http://dmtcs.episciences.org/2121

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stav Ashur
    • 1
    Email author
  • Omrit Filtser
    • 1
  • Matthew J. Katz
    • 1
  • Rachel Saban
    • 1
  1. 1.Department of Computer ScienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations