Advertisement

Conditional Convolutional Generative Adversarial Networks Based Interactive Procedural Game Map Generation

  • Kuang Ping
  • Luo DingliEmail author
Conference paper
  • 85 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1129)

Abstract

There is a strong need for a procedural map design system which can generate complex detail game maps but with simple user control. We propose an interactive real-time design system made with Conditional Generative Adversarial Network and Convolutional Neural Network. This system takes user-defined game-play area map as input, and generate a complex game map with the same design pattern as training samples automatically. It can output an abstract label map which can be used in other procedural generator called theme renderer. The impacts of our obtained results show the potential of deep learning methods used in procedural game map generation.

Keywords

Generative adversarial networks Procedural generation Convolutional neural networks 

References

  1. 1.
    Content detailGoogle Scholar
  2. 2.
    Create a procedurally generated dungeon cave systemGoogle Scholar
  3. 3.
    Generate random cave levels using cellular automataGoogle Scholar
  4. 4.
    Keras: The python deep learning libraryGoogle Scholar
  5. 5.
    Procedural content generation wikiGoogle Scholar
  6. 6.
    Procedural generation, December 2017Google Scholar
  7. 7.
    Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)
  8. 8.
    Ashlock, D., Mcguinness, C.: Automatic generation of fantasy role-playing modules. In: 2014 IEEE Conference on Computational Intelligence and Games (2014)Google Scholar
  9. 9.
    Cordonnier, G., Galin, E., Gain, J., Benes, B., Guerin, E., Peytavie, A., Canie, M.-P.: Authoring landscapes by combining ecosystem and terrain erosion simulation. ACM Trans. Graph. 36(4), 134 (2017)CrossRefGoogle Scholar
  10. 10.
    Gain, J., Marais, P., Straßer, W.: Terrain sketching. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 31–38. ACM (2009)Google Scholar
  11. 11.
    Gentile, C., Li, S., Kar, P., Karatzoglou, A., Zappella, G., Etrue, E.: On context-dependent clustering of bandits. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1253–1262. JMLR. org (2017)Google Scholar
  12. 12.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)Google Scholar
  13. 13.
    Guérin, É.: Interactive example-based terrain authoring with conditional generative adversarial networks. ACM Trans. Graph. (TOG) 36(6), 228 (2017)CrossRefGoogle Scholar
  14. 14.
    Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforcement learning that matters. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)Google Scholar
  15. 15.
    Imani, M., Ghoreishi, S.F., Allaire, D., Braga-Neto, U.M.: MFBO-SSM: multi-fidelity Bayesian optimization for fast inference in state-space models. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7858–7865 (2019)Google Scholar
  16. 16.
    Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)
  17. 17.
    Kar, P., Li, S., Narasimhan, H., Chawla, S., Sebastiani, F.: Online optimization methods for the quantification problem. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1625–1634. ACM (2016)Google Scholar
  18. 18.
    Korda, N., Szörényi, B., Shuai, L.: Distributed clustering of linear bandits in peer to peer networks. In: Journal of Machine Learning Research Workshop and Conference Proceedings, vol. 48, pp. 1301–1309. International Machine Learning Society (2016)Google Scholar
  19. 19.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  20. 20.
    Li, S.: The art of clustering bandits. Ph.D. thesis, Università degli Studi dell’ Insubria (2016)Google Scholar
  21. 21.
    Li, S., Karatzoglou, A., Gentile, C.: Collaborative filtering bandits. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 539–548. ACM (2016)Google Scholar
  22. 22.
    Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
  23. 23.
    Olsen, J.: Realtime procedural terrain generation (2004)Google Scholar
  24. 24.
    On, C.K., Foong, N.W., Teo, J., Ibrahim, A.A.A., Guan, T.T.: Rule-based procedural generation of item in role-playing game. Int. J. Adv. Sci. Eng. Inf. Technol. 7(5), 1735 (2017)CrossRefGoogle Scholar
  25. 25.
    Qi, Y., Shen, X.-K., Duan, M.-Y., Cheng, H.-L.: A method of rendering clouds with perlin noise [j]. Acta Simulata Systematica Sinica 9, 023 (2002)Google Scholar
  26. 26.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
  27. 27.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)Google Scholar
  28. 28.
    Schaal, J.: Procedural terrain generation. A case study from the game industry. In: Game Dynamics, pp. 133–150 (2017)Google Scholar
  29. 29.
    Wang, C., Bernstein, A., Le Boudec, J.-Y., Paolone, M.: Explicit conditions on existence and uniqueness of load-flow solutions in distribution networks. IEEE Trans. Smart Grid 9(2), 953–962 (2016)CrossRefGoogle Scholar
  30. 30.
    Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation models. IEEE Trans. Vis. Comput. Graph. 13(4), 834–848 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Electronic Science and Technology of ChinaChenghuaPeople’s Republic of China

Personalised recommendations