An Adaptive Context Modeling Approach Using Genetic Algorithm in IoTs Environments

  • Ahmed A. A. Gad-ElrabEmail author
  • Shereen A. El-aal
  • Neveen I. Ghali
  • Afaf A. S. Zaghrout
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1129)


Internet of Things (loTs) is the future of ubiquitous and personalized intelligent service delivery. It depends on installing intelligent sensors to sense and control physical environment to generate enormous amount of data with various data types. Context aware computing is employed for transforming these sensor data into knowledge through three stages: collection, modeling and reasoning. In context modeling, raw data represents in according meaningful manner statically. Furthermore, with growth of IoTs live applications, static modeling is not convenient because of changing context data structure overtime. The work in this paper is dedicated to propose a new dynamic approach for context modeling based on genetic algorithm and satisfaction factor. In addition, flexibility indicator property and context based are defined to measure the performance of the proposed approach.


Internet of Things (IoTs) Context modeling Genetic algorithm Satisfaction degree Flexibility indicator 


  1. 1.
    Ashton, K.: That “internet of things” thing in the real world, things matter more than ideas. RFID J. (2009).
  2. 2.
    Schilit, B., Theimer, M.: Disseminating active map information to mobile hosts. IEEE Netw. 8(5), 22–32 (1994).
  3. 3.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutorials 16(1), 414–454 (2014)CrossRefGoogle Scholar
  4. 4.
    Cooper, J., James, A.: Challenges for database management in the internet of things. IETE Tech. Rev. 26(5), 320–329 (2009)CrossRefGoogle Scholar
  5. 5.
    Sain, M., Lee, H., Chung, W.Y.: Designing context awareness middleware architecture for personal healthcare information system. In: Proceedings of the 2010 12th International Conference on Advanced Communication Technology (ICACT), Phoenix Park, Korea, pp. 1650–1654, February 2010. ISBN: 978-1-4244-5427-3Google Scholar
  6. 6.
    Moore, P., Hu, B., Zhu, X., Campbell, W., Ratcliffe, M.: A Survey of context modeling for pervasive cooperative learning. In: IEEE Information Technologies and Applications in Education (2007)Google Scholar
  7. 7.
    Ali, A., Shirehjini, N., Semsar, A.: Human interaction with IoT-based smart environments. Multimedia Tools Appl. 76(11), 13343–13365 (2017)CrossRefGoogle Scholar
  8. 8.
    Kranz, M., Holleis, P., Schmidt, A.: Embedded interaction: interacting with the Internet of Things. IEEE Internet Comput. 14(2), 46–53 (2010)CrossRefGoogle Scholar
  9. 9.
    Miraoui, M., El-etriby, S., et al.: Ontology-based context modeling for a smart living room. In: Proceedings of World Congress on Engineering and Computer Science, vol. I (2015)Google Scholar
  10. 10.
    Kim, J., Chung, K.: Ontology-based healthcare context information model to implement ubiquitous environment. Multimedia Tools Appl. 71(2), 873–888 (2014)CrossRefGoogle Scholar
  11. 11.
    Sagaya, K.S., Kalpan, Y.: A review on context modelling techniques in context aware computing. Int. J. Eng. Technol. (IJET) 8(1), 429–433 (2016)Google Scholar
  12. 12.
    Bettini, C., Brdiczka, O., Henricksen, K., et al.: A survey of context modelling and reasoning techniques. Pervasive Mobile Comput. 6, 161–180 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ahmed A. A. Gad-Elrab
    • 1
    • 2
    Email author
  • Shereen A. El-aal
    • 2
  • Neveen I. Ghali
    • 3
  • Afaf A. S. Zaghrout
    • 2
  1. 1.King Abdul-Aziz UniversityJeddahSaudi Arabia
  2. 2.Faculty of ScienceAl-Azhar UniversityCairoEgypt
  3. 3.Faculty of Computers and Information TechnologyFuture University in EgyptCairoEgypt

Personalised recommendations