Small Ship Detection on Optical Satellite Imagery with YOLO and YOLT

  • Wilder Nina
  • William Condori
  • Vicente Machaca
  • Juan Villegas
  • Eveling CastroEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1130)


Actually, the use of deep learning in object detection gives good results, but this performance decreases when there are small objects in the image. In this work, is presented a comparison between the last version of You Only Look Once (YOLO) and You Only Look Twice (YOLT) on the problem of detecting small objects (ships) on optical satellite imagery. Two datasets were used: High-Resolution Ship Collection (HRSC) and Mini Ship Data Set (MSDS), the last one was built by us. The mean object’s width for HRSC and MSDS are 150 and 50 pixels, respectively. The results showed that YOLT is good only for small objects with 76,06% of Average Precision (AP), meanwhile, YOLO reached 69,80% in the MSDS dataset. Moreover, in the case of the HRSC dataset where have objects of different sizes, YOLT obtained a 40% of AP against 75% of YOLO.


YOLO YOLT Small objects Object detection Ship detection Satellite Imagery 



This research was supported from Universidad Nacional de San Agustín de Arequipa Contract: IBA-0032-2017-UNSA, like part of the project “Detection of industrial fishing vessels within 5 miles of the Arequipa Region using high performance computing and satellite images”. Thanks to the CiTeSoft Contract: EC-0003-2017-UNSA for the equipment and the resources bring to the project.


  1. 1.
    Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: European Conference on Computer Vision, pp. 740–755. Springer (2014)Google Scholar
  2. 2.
    Fu, K., Li, Y., Sun, H., Yang, X., Xu, G., Li, Y., Sun, X.: A ship rotation detection model in remote sensing images based on feature fusion pyramid network and deep reinforcement learning. Remote Sens. 10(12), 1922 (2018) CrossRefGoogle Scholar
  3. 3.
    Dong, C., Liu, J., Xu, F.: Ship detection in optical remote sensing images based on saliency and a rotation-invariant descriptor. Remote Sens. 10(3), 400 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, S., Zhang, Z., Li, B., Li, C.: Multiscale rotated bounding box-based deep learning method for detecting ship targets in remote sensing images. Sensors 18(8), 2702 (2018)CrossRefGoogle Scholar
  5. 5.
    Yang, X., Sun, H., Sun, X., Yan, M., Guo, Z., Fu, K.: Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network. IEEE Access 6, 50839–50849 (2018)CrossRefGoogle Scholar
  6. 6.
    Zhang, R., Yao, J., Zhang, K., Feng, C., Zhang, J.: S-CNN-based ship detection from high-resolution remote sensing images. In: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 41 (2016)Google Scholar
  7. 7.
    Zhang, S., Wu, R., Xu, K., Wang, J., Sun, W.: R-CNN-based ship detection from high resolution remote sensing imagery. Remote Sens. 11(6), 631 (2019)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Cui, H.-Y., Kuang, Z., Li, G.-Q.: Ship detection and classification on optical remote sensing images using deep learning, vol. 12, p. 05015. EDP Sciences (2017)Google Scholar
  9. 9.
    Ma, M., Chen, J., Liu, W., Yang, W.: Ship classification and detection based on CNN using GF-3 SAR images. Remote Sens. 10(12), 2043 (2018)CrossRefGoogle Scholar
  10. 10.
    Zhao, H., Zhang, W., Sun, H., Xue, B.: Embedded deep learning for ship detection and recognition. Future Internet 11(2), 53 (2019)CrossRefGoogle Scholar
  11. 11.
    Eggert, C., Brehm, S., Winschel, A., Zecha, D., Lienhart, R.: A closer look: small object detection in faster R-CNN. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 421–426. IEEE (2017)Google Scholar
  12. 12.
    Yang, X., Sun, H., Fu, K., Yang, J., Sun, X., Yan, M., Guo, Z.: Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sens. 10(1), 132 (2018)CrossRefGoogle Scholar
  13. 13.
    Corbane, C., Pecoul, E., Demagistri, L., Petit, M.: Fully automated procedure for ship detection using optical satellite imagery. In: Remote Sensing of Inland, Coastal, and Oceanic Waters, vol. 7150. International Society for Optics and Photonics (2008)Google Scholar
  14. 14.
    Inggs, M.R., Robinson, A.D.: Ship target recognition using low resolution radar and neural networks. IEEE Trans. Aerosp. Electron. Syst. 35(2), 386–393 (1999)CrossRefGoogle Scholar
  15. 15.
    Bi, F., Zhu, B., Gao, L., Bian, M.: A visual search inspired computational model for ship detection in optical satellite images. IEEE Geosci. Remote Sens. Lett. 9(4), 749–753 (2012)CrossRefGoogle Scholar
  16. 16.
    Shi, H., Zhang, Q., Bian, M., Wang, H., Wang, Z., Chen, L., Yang, J.: A novel ship detection method based on gradient and integral feature for single-polarization synthetic aperture radar imagery. Sensors 18(2), 563 (2018)CrossRefGoogle Scholar
  17. 17.
    Cheng, G., Han, J.: A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 117, 11–28 (2017)CrossRefGoogle Scholar
  18. 18.
    Liu, Z.K., Weng, L.B., Yang, Y.P., et al.: A high resolution optical satellite image dataset for ship recognition and some new baselines (2017)Google Scholar
  19. 19.
    Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv (2018)Google Scholar
  20. 20.
    Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. arXiv preprint arXiv:1612.08242 (2016)
  21. 21.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)Google Scholar
  22. 22.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)Google Scholar
  23. 23.
    Girshick, R.: Fast R-CNN. arXiv preprint arXiv:1504.08083 (2015)
  24. 24.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  25. 25.
    Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37. Springer (2016)Google Scholar
  26. 26.
    Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vision 104(2), 154–171 (2013)CrossRefGoogle Scholar
  27. 27.
    Liu, Z., Yuan, L., Weng, L., Yang, Y.: A high resolution optical satellite image dataset for ship recognition and some new baselines. In: ICPRAM, pp. 324–331 (2017)Google Scholar
  28. 28.
    Van Etten, A.: You only look twice: rapid multi-scale object detection in satellite imagery. CoRR, abs/1805.09512 (2018)Google Scholar
  29. 29.
    Van Etten, A.: Satellite imagery multiscale rapid detection with windowed networks. CoRR, abs/1809.09978 (2018)Google Scholar
  30. 30.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  31. 31.
    Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Wilder Nina
    • 1
  • William Condori
    • 1
  • Vicente Machaca
    • 2
  • Juan Villegas
    • 1
  • Eveling Castro
    • 1
    Email author
  1. 1.Universidad Nacional de San Agustín de ArequipaArequipaPeru
  2. 2.Universidad La Salle de ArequipaArequipaPeru

Personalised recommendations