Evaluating Taxonomic Relationships Using Semantic Similarity Measures on Sensor Domain Ontologies

  • Mireya Tovar VidalEmail author
  • Aimee Cecilia Hernández García
  • José de Jesús Lavalle Martínez
  • José A. Reyes-Ortiz
  • Darnes Vilariño Ayala
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1130)


The importance of sensors nowadays is all about the boom of internet of things. Sensors produce a mass of heterogeneous data continuously, and just like the data produced on the web, sensor data lack semantic information. This problem can be overcome with semantic web technologies by designing ontologies to provide a semantic structure of sensor data as well as machine readable data improving the interoperability. Those ontologies must be evaluated to verify their semantic quality and this is where semantic similarity plays its function. Semantic similarity is a metric used to know the similarity degree of two concepts in an ontology. In this research, we propose a system which evaluates taxonomic relationships in ontologies using semantic similarity through an algorithm and the accuracy measure. The applied semantic similarity measures are classified in four categories: structure-based, feature-based, content information and hybrid measures. In this research, we evaluate sensors domain ontologies using semantic similarity measures and we obtained promising results in the evaluation of the taxonomic relationships.


Semantic similarity Taxonomic relationships Domain ontologies 



This work is supported by the Sectoral Research Fund for Education with the CONACyT project 257357, and partially supported by the VIEP-BUAP project.


  1. 1.
    Agarwal, R., Fernandez, D.G., Elsaleh, T., Gyrard, A., Lanza, J., Sanchez, L., Georgantas, N., Issarny, V.: Unified IoT ontology to enable interoperability and federation of testbeds. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 70–75, December 2016Google Scholar
  2. 2.
    Ali, S., Khusro, S., Ullah, I., Khan, A., Khan, I.: Smartontosensor: ontology for semantic interpretation of smartphone sensors data for context-aware applications. J. Sensors 2017, 8790198:1–8790198:26 (2017)CrossRefGoogle Scholar
  3. 3.
    Berners-lee, T., Hendler, J.: The semantic web. Sci. Am. 284, 34–43 (2001)CrossRefGoogle Scholar
  4. 4.
    Brank, J., Grobelnik, M., Mladenić, D.: Automatic evaluation of ontologies, pp. 193–219. Springer, London (2007)Google Scholar
  5. 5.
    Bravo, M., Reyes, J., Cruz-Ruiz, I., Gutiérrez-Rosales, A., Padilla-Cuevas, J.: Ontology for academic context reasoning. Procedia Comput. Sci. 141, 175–182 (2018)CrossRefGoogle Scholar
  6. 6.
    Bravo, M., Reyes-Ortiz, J.A., Cruz, I.: Researcher profile ontology for academic environment. In: Arai, K., Kapoor, S. (eds.) Advances in Computer Vision, pp. 799–817. Springer, Cham (2020)Google Scholar
  7. 7.
    Eid, M., Liscano, R., Saddik, A.E.: A novel ontology for sensor networks data. In: 2006 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, pp. 75–79, July 2006Google Scholar
  8. 8.
    Gómez-Pérez, A.: Ontology evaluation, pp. 251–273. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum.-Comput. Stud. 43(5), 907–928 (1995)CrossRefGoogle Scholar
  10. 10.
    Russomanno, D.J., Kothari, C., Thomas, O.A.: Building a sensor ontology: a practical approach leveraging ISO and OGC models, pp. 637–643, January 2005Google Scholar
  11. 11.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. CoRR, cmp-lg/9709008 (1997)Google Scholar
  12. 12.
    Kolozali, S., Elsaleh, T., Barnaghi, P.M.: A validation tool for the W3C SSN ontology based sensory semantic knowledge. In: TC/SSN@ISWC (2014)Google Scholar
  13. 13.
    Li, Y., Bandar, Z.A., Mclean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans. Knowl. Data Eng. 15(4), 871–882 (2003)CrossRefGoogle Scholar
  14. 14.
    Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning, ICML 1998, pp. 296–304. Morgan Kaufmann Publishers Inc., San Francisco (1998)Google Scholar
  15. 15.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web, pp. 251–263. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Mazandu, G., Mulder, N.: Information content-based gene ontology semantic similarity approaches: toward a unified framework theory. BioMed Res. Int. 292063, 2013 (2013)Google Scholar
  17. 17.
    Neuhaus, H., Compton, M.: The semantic sensor network ontology: a generic language to describe sensor assets (2009)Google Scholar
  18. 18.
    Paul, R., Groza, T., Zankl, A., Hunter, J.: Semantic similarity-driven decision support in the skeletal dysplasia domain, November 2012Google Scholar
  19. 19.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)CrossRefGoogle Scholar
  20. 20.
    Resnik, P.: Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. CoRR, abs/1105.5444 (2011)Google Scholar
  21. 21.
    Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)CrossRefGoogle Scholar
  22. 22.
    Rueda, C., Galbraith, N., Morris, R., Bermudez, L., Arko, R., Graybeal, J.: The MMI device ontology: enabling sensor integration. In: American Geophysical Union Fall Meeting – Session, vol. 16, pp. 44–48, January 2010Google Scholar
  23. 23.
    Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic similarity in wordnet. In: Proceedings of the 16th European Conference on Artificial Intelligence, ECAI 2004, pp. 1089–1090. IOS Press, Amsterdam (2004)Google Scholar
  24. 24.
    Sánchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: a new feature-based approach. Expert Syst. Appl. 39(9), 7718–7728 (2012)CrossRefGoogle Scholar
  25. 25.
    Tversky, A.: Features of similarity. Psychol. Rev. 84, 327–352 (1977)CrossRefGoogle Scholar
  26. 26.
    Wu, Z., Palmer, M.: Verb semantics and lexical selection. CoRR, abs/cmp-lg/9406033 (1994)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mireya Tovar Vidal
    • 1
    Email author
  • Aimee Cecilia Hernández García
    • 1
  • José de Jesús Lavalle Martínez
    • 1
  • José A. Reyes-Ortiz
    • 2
  • Darnes Vilariño Ayala
    • 1
  1. 1.Faculty of Computer ScienceBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Universidad Autónoma MetropolitanaMexico CityMexico

Personalised recommendations