Advertisement

Pathophysiology of Severe Traumatic Brain Injury

  • Niklas MarklundEmail author
  • Olli Tenovuo
Chapter
  • 206 Downloads

Abstract

Traumatic brain injury (TBI) is named the most complex disease in the most complex organ in the body. TBI is extremely heterogeneous and so is the underlying pathophysiology. At the time of impact, the primary brain injury results in neuronal, vascular, and glial damage. This primary injury is exacerbated by complex processes leading to progressive brain injury including brain edema and increased intracranial pressure, worsening white matter injury, reduced cerebral blood flow, and a reduced capacity for ATP generation. Furthermore, complex local and systemic inflammatory responses ensue and these may contribute to worsening brain injury. Understanding of the secondary and late injury processes is key in developing novel treatment targets and for correct clinical assessment of the patient. In this chapter, the crucial pathophysiological events occurring in TBI are summarized.

Keywords

Severe traumatic brain injury Axonal injury Pathophysiology Diffuse injury Focal injury Cerebral edema 

References

  1. Abu Hamdeh S, Marklund N, Lannsjo M, Howells T, Raininko R, Wikstrom J, et al. Extended anatomical grading in diffuse axonal injury using MRI: hemorrhagic lesions in the Substantia Nigra and Mesencephalic Tegmentum indicate poor long-term outcome. J Neurotrauma. 2017;34(2):341–52.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abu Hamdeh S, Waara ER, Moller C, Soderberg L, Basun H, Alafuzoff I, et al. Rapid amyloid-beta oligomer and protofibril accumulation in traumatic brain injury. Brain Pathol. 2018;28(4):451–62.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adams JH, Graham DI, Murray LS, Scott G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol. 1982;12(6):557–63.PubMedCrossRefGoogle Scholar
  4. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15(1):49–59.PubMedCrossRefGoogle Scholar
  5. Adams JH, Jennett B, Murray LS, Teasdale GM, Gennarelli TA, Graham DI. Neuropathological findings in disabled survivors of a head injury. J Neurotrauma. 2011;28(5):701–9.PubMedCrossRefGoogle Scholar
  6. Andresen M, Juhler M. Intracranial pressure following complete removal of a small demarcated brain tumor: a model for normal intracranial pressure in humans. J Neurosurg. 2014;121(4):797–801.PubMedCrossRefGoogle Scholar
  7. Andriessen TM, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med. 2010;14(10):2381–92.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: clues to axon and myelin repair capacity. Exp Neurol. 2016;275(Pt 3):328–33.PubMedCrossRefGoogle Scholar
  9. Axelson HW, Winkler T, Flygt J, Djupsjo A, Hanell A, Marklund N. Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restor Neurol Neurosci. 2013;31(1):73–85.PubMedGoogle Scholar
  10. Bose P, Hou J, Thompson FJ. Traumatic brain injury (TBI)-induced spasticity: neurobiology, treatment, and rehabilitation. In: Kobeissy FH, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects, Frontiers in neuroengineering. Boca Raton: CRC Press; 2015.Google Scholar
  11. Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 2004;165(2):357–71.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol. 2012;167(4):699–719.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cole JH, Leech R, Sharp DJ, Alzheimer’s Disease Neuroimaging Initiative. Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann Neurol. 2015;77(4):571–81.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Combs HL, Jones TA, Kozlowski DA, Adkins DL. Combinatorial motor training results in functional reorganization of remaining motor cortex after controlled cortical impact in rats. J Neurotrauma. 2016;33(8):741–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, Inaba K, et al. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflammation. 2016;13:40.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ding K, Marquez de la Plata C, Wang JY, Mumphrey M, Moore C, Harper C, et al. Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. J Neurotrauma. 2008;25(12):1433–40.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol. 2010;23(3):293–9.PubMedCrossRefGoogle Scholar
  18. Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics. 2015;12(1):143–50.PubMedCrossRefGoogle Scholar
  19. Fagerholm ED, Hellyer PJ, Scott G, Leech R, Sharp DJ. Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain. 2015;138(Pt 6):1696–709.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Flygt J, Gumucio A, Ingelsson M, Skoglund K, Holm J, Alafuzoff I, et al. Human traumatic brain injury results in oligodendrocyte death and increases the number of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol. 2016;75(6):503–15.PubMedCrossRefGoogle Scholar
  21. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 1982;12(6):564–74.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Geoffroy CG, Zheng B. Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol. 2014;27:31–8.PubMedCrossRefGoogle Scholar
  23. Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, et al. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab. 2003;23(10):1239–50.PubMedCrossRefGoogle Scholar
  24. Goldstein LB. Prescribing of potentially harmful drugs to patients admitted to hospital after head injury. J Neurol Neurosurg Psychiatry. 1995;58(6):753–5.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Graham DI, Ford I, Adams JH, Doyle D, Teasdale GM, Lawrence AE, et al. Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry. 1989;52(3):346–50.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Graham DI, Adams JH, Murray LS, Jennett B. Neuropathology of the vegetative state after head injury. Neuropsychol Rehabil. 2005;15(3–4):198–213.PubMedCrossRefGoogle Scholar
  27. Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol. 2015;74(12):1147–57.PubMedGoogle Scholar
  28. Hayes JP, Bigler ED, Verfaellie M. Traumatic brain injury as a disorder of brain connectivity. J Int Neuropsychol Soc. 2016;22(2):120–37.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hill CS, Coleman MP, Menon DK. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 2016;39(5):311–24.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Johnson VE, Stewart W, Smith DH. Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012;22(2):142–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain J Neurol. 2013a;136(Pt 1):28–42.CrossRefGoogle Scholar
  32. Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2013b;246:35–43.PubMedCrossRefGoogle Scholar
  33. Kampfl A, Franz G, Aichner F, Pfausler B, Haring HP, Felber S, et al. The persistent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients. J Neurosurg. 1998;88(5):809–16.PubMedCrossRefGoogle Scholar
  34. Kawai N, Nakamura T, Tamiya T, Nagao S. Metabolic disturbance without brain ischemia in traumatic brain injury: a positron emission tomography study. Acta Neurochir Suppl. 2008;102:241–5.PubMedCrossRefGoogle Scholar
  35. Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V, et al. White matter damage and cognitive impairment after traumatic brain injury. Brain. 2011;134(Pt 2):449–63.PubMedCrossRefGoogle Scholar
  36. Kinoshita K. Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care. 2016;4:29.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Lamade AM, Kenny EM, Anthonymuthu TS, Soysal E, Clark RSB, Kagan VE, et al. Aiming for the target: mitochondrial drug delivery in traumatic brain injury. Neuropharmacology. 2019;145(Pt B):209–19.PubMedCrossRefGoogle Scholar
  38. Ljungqvist J, Nilsson D, Ljungberg M, Esbjornsson E, Eriksson-Ritzen C, Skoglund T. Longitudinal changes in diffusion tensor imaging parameters of the corpus callosum between 6 and 12 months after diffuse axonal injury. Brain Inj. 2017;31(3):344–50.PubMedCrossRefGoogle Scholar
  39. Magnoni S, Esparza TJ, Conte V, Carbonara M, Carrabba G, Holtzman DM, et al. Tau elevations in the brain extracellular space correlate with reduced amyloid-beta levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain. 2012;135(Pt 4):1268–80.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Magnoni S, Mac Donald CL, Esparza TJ, Conte V, Sorrell J, Macri M, et al. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain. 2015;138(Pt 8):2263–77.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Mannino C, Glenn TC, Hovda DA, Vespa PM, McArthur DL, Van Horn JD, et al. Acute glucose and lactate metabolism are associated with cognitive recovery following traumatic brain injury. J Neurosci Res. 2018;96(4):696–701.PubMedCrossRefGoogle Scholar
  42. Marklund N, Hillered L. Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol. 2011;164(4):1207–29.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Masel BE, DeWitt DS. Traumatic brain injury: a disease process, not an event. J Neurotrauma. 2010;27(8):1529–40.PubMedPubMedCentralCrossRefGoogle Scholar
  44. McGuire JL, DePasquale EAK, Watanabe M, Anwar F, Ngwenya LB, Atluri G, et al. Chronic dysregulation of cortical and subcortical metabolism after experimental traumatic brain injury. Mol Neurobiol. 2019;56(4):2908–21.PubMedCrossRefGoogle Scholar
  45. McKee CA, Lukens JR. Emerging roles for the immune system in traumatic brain injury. Front Immunol. 2016;7:556.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Moe HK, Moen KG, Skandsen T, Kvistad KA, Laureys S, Haberg A, et al. The influence of traumatic axonal injury in thalamus and brainstem on level of consciousness at scene or admission: a clinical magnetic resonance imaging study. J Neurotrauma. 2018;35:975.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Nag S, Kapadia A, Stewart DJ. Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol. 2011;37(1):3–23.PubMedCrossRefGoogle Scholar
  48. Nassiri F, Badhiwala JH, Witiw CD, Mansouri A, Davidson B, Almenawer SA, et al. The clinical significance of isolated traumatic subarachnoid hemorrhage in mild traumatic brain injury: a meta-analysis. J Trauma Acute Care Surg. 2017;83(4):725–31.PubMedCrossRefGoogle Scholar
  49. Newcombe VF, Williams GB, Outtrim JG, Chatfield D, Gulia Abate M, Geeraerts T, et al. Microstructural basis of contusion expansion in traumatic brain injury: insights from diffusion tensor imaging. J Cereb Blood Flow Metab. 2013;33(6):855–62.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 2013;12(7):716–26.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Pruitt DT, Danaphongse TT, Schmid AN, Morrison RA, Kilgard MP, Rennaker RL 2nd, et al. Traumatic brain injury occludes training-dependent cortical reorganization in the contralesional hemisphere. J Neurotrauma. 2017;34(17):2495–503.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ritzel RM, Doran SJ, Barrett JP, Henry RJ, Ma EL, Faden AI, et al. Chronic alterations in systemic immune function after traumatic brain injury. J Neurotrauma. 2018;35(13):1419–36.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol. 2014;5:114.PubMedPubMedCentralGoogle Scholar
  54. Ryan CG, Thompson RE, Temkin NR, Crane PK, Ellenbogen RG, Elmore JG. Acute traumatic subdural hematoma: current mortality and functional outcomes in adult patients at a level I trauma center. J Trauma Acute Care Surg. 2012;73(5):1348–54.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT, et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma. 2008;25(7):719–38.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Simon DW, McGeachy MJ, Bayir H, Clark RSB, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(9):572.PubMedCrossRefGoogle Scholar
  57. Sist B, Fouad K, Winship IR. Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Exp Neurol. 2014;252:47–56.PubMedCrossRefGoogle Scholar
  58. Skandsen T, Kvistad KA, Solheim O, Strand IH, Folvik M, Vik A. Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome. J Neurosurg. 2010;113(3):556–63.PubMedCrossRefGoogle Scholar
  59. Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol. 2013a;9(4):211–21.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Smith DH, Hicks R, Povlishock JT. Therapy development for diffuse axonal injury. J Neurotrauma. 2013b;30(5):307–23.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Stein SC, Georgoff P, Meghan S, Mizra K, Sonnad SS. 150 years of treating severe traumatic brain injury: a systematic review of progress in mortality. J Neurotrauma. 2010;27(7):1343–53.PubMedCrossRefGoogle Scholar
  62. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38.PubMedCrossRefGoogle Scholar
  63. Tennant KA. Thinking outside the brain: structural plasticity in the spinal cord promotes recovery from cortical stroke. Exp Neurol. 2014;254:195–9.PubMedCrossRefGoogle Scholar
  64. Thelin EP, Nelson DW, Vehvilainen J, Nystrom H, Kivisaari R, Siironen J, et al. Evaluation of novel computerized tomography scoring systems in human traumatic brain injury: an observational, multicenter study. PLoS Med. 2017;14(8):e1002368.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current opportunities for clinical monitoring of axonal pathology in traumatic brain injury. Front Neurol. 2017;8:599.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Wilson L, Stewart W, Dams-O’Connor K, Diaz-Arrastia R, Horton L, Menon DK, et al. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 2017;16(10):813–25.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Wolpaw JR. Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol. 2007;189(2):155–69.CrossRefGoogle Scholar
  68. Yue GH, Clark BC, Li S, Vaillancourt DE. Understanding neuromuscular system plasticity to improve motor function in health, disease, and injury. Neural Plast. 2017;2017:2425180.PubMedPubMedCentralCrossRefGoogle Scholar

Further Reading

  1. Shetty AK, Mishra V, Kodali M, Hattiangady B. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves. Front Cell Neurosci. 2014;8:232. https://doi.org/10.3389/fncel.2014.00232. eCollection 2014.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Clinical Sciences Lund, Neurosurgery, Lund UniversitySkåne University HospitalLundSweden
  2. 2.Turku Brain Injury Centre, Turku University HospitalTurkuFinland
  3. 3.Department of Clinical MedicineUniversity of TurkuTurkuFinland

Personalised recommendations