Fundamentals of Polariton Physics

  • Arash Rahimi-ImanEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 229)


Light–matter interaction is a prerequisite for the observation of polaritons and for the utilization of excitonic particles in optical devices. It is particularly essential to deal with the recipe for strong coupling of excitons and photons in this early chapter to provide the necessary theoretical background for the dealings with the following content. Firstly, the principles of light–matter interaction will be introduced and the building blocks of polariton formation presented. Thereafter, the composite boson given by the quasi-particle polariton will be discussed and its general properties will be summarized. Here, the important role of the cavity–exciton detuning in optical microcavities with quantum-well excitons is sufficiently discussed in order to establish the necessary understanding of its impact on the quasi-particles’ behaviour for later considerations of polariton condensates.


  1. 1.
    C .F. Klingshirn, Semiconductor Optics (Springer, Berlin, 2012)CrossRefGoogle Scholar
  2. 2.
    I.I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652–654 (1937)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    L.V. Keldysh, A.N. Kozlov, Collective properties of excitons in semiconductors. Sov. Phys. JETP 27, 521–528 (1968)ADSGoogle Scholar
  4. 4.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Wiley-Interscience, New York, 1991)Google Scholar
  5. 5.
    H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductor, 5th edn. (World Scientific Publishing Co, Singapore, 2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    J.I. Frenkel, Wave Mechanics: Elementary Theory (Clarendon Press, Oxford, 1932)zbMATHGoogle Scholar
  7. 7.
    E.L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Springer, Berlin, 2004)Google Scholar
  8. 8.
    E.L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science, Chelmsford, 2005)Google Scholar
  9. 9.
    E. Hanamura, H. Haug, Condensation effects of excitons. Phys. Rep. 33(4), 209 (1977)ADSCrossRefGoogle Scholar
  10. 10.
    G.H. Wannier, The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191 (1937)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    N.F. Mott, Conduction in polar crystals. II. The conduction band and ultra-violet absorption of alkali-halide crystals. Trans. Faraday Soc. 34, 500 (1938)CrossRefGoogle Scholar
  12. 12.
    H.M. Gibbs, G. Khitrova, S.W. Koch, Exciton-polariton light-semiconductor coupling effects. Nat. Phot. 5(5), 273 (2011)CrossRefGoogle Scholar
  13. 13.
    D. Sanvitto, V. Timofeev, Exciton Polaritons in Microcavities: New Frontiers (Springer, Berlin, 2012)Google Scholar
  14. 14.
    M. Kira, W. Hoyer, T. Stroucken, S.W. Koch, Exciton formation in semiconductors and the influence of a photonic environment. Phys. Rev. Lett. 87(17), 176401 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    R.A. Kaindl, M.A. Carnahan, D. Hägele, R. Lövenich, D.S. Chemla, Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature 423(6941), 734–738 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H.M. Gibbs, W. Hoyer, M. Kira, S.W. Koch, J.P. Prineas, H. Stolz, Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons. Phys. Rev. Lett. 92(6), 067402 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    J.H. Davies, The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge University Press, Cambridge, 1998)Google Scholar
  18. 18.
    Y. Yamamoto, F. Tassone, H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer, Berlin, 2000)Google Scholar
  19. 19.
    R.L. Greene, K.K. Bajaj, D.E. Phelps, Energy levels of Wannier excitons in \({G}a{A}s-{G}a_{1-x}{A}l_{x}{A}s\) quantum-well structures. Phys. Rev. B 29(4), 1807 (1984)Google Scholar
  20. 20.
    M.S. Skolnick, T.A. Fisher, D.M. Whittaker, Strong coupling phenomena in quantum microcavity structures. Semicond. Sci. Technol. 13, 645–669 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82(2), 1489 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    L.C. Andreani, A. Pasquarello, Accurate theory of excitons in GaAs-GaAlAs quantum wells. Phys. Rev. B 42, 8928–8938 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Masumoto, M. Matsuura, S. Tarucha, H. Okamoto, Direct experimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells. Phys. Rev. B 32(6), 4275–4278 (1985)ADSCrossRefGoogle Scholar
  24. 24.
    A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, Oxford, 2007)CrossRefGoogle Scholar
  25. 25.
    R.P. Leavitt, J.W. Little, Simple method for calculating exciton binding energies in quantum-confined semiconductor structures. Phys. Rev. B 42(18), 11774 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    C. Priester, G. Allan, M. Lannoo, Wannier excitons in GaAs-Ga\(_{1-x}\)Al\(_{x}\)As quantum-well structures: influence of the effective-mass mismatch. Phys. Rev. B 30(12):7302 (1984)ADSCrossRefGoogle Scholar
  27. 27.
    J. Dreybrodt, A. Forchel, J.P. Reithmaier, Excitonic transitions in GaInAs/GaAs surface quantum wells. Journal de Physique IV 3(C5), 265–268 (1993)CrossRefGoogle Scholar
  28. 28.
    L.S. Dang, D. Heger, R. André, F. Bœuf, R. Romestain, Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81(18), 3920 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    K. Vahala, Optical Microcavities (World Scientific, Singapore, 2004)Google Scholar
  30. 30.
    Y. Yamamoto, A. Imamoglu, Mesoscopic Quantum Optics (Wiley, Hoboken, 1999)zbMATHGoogle Scholar
  31. 31.
    B. Deveaud. The Physics of Semiconductor Microcavities (Wiley-VCH Verlag, Hoboken, 2007)Google Scholar
  32. 32.
    A. Kavokin, G. Malpuech, Cavity Polaritons (Academic Press, Cambridge, 2003)CrossRefGoogle Scholar
  33. 33.
    A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities, vol. 1 (Oxford University Press, Oxford, 2017)CrossRefGoogle Scholar
  34. 34.
    K.J. Vahala, Optical microcavities. Nature 424(6950), 839–846 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    A. Rahimi-Iman. Nichtlineare Eekte in III/V Quantenlm-Mikroresonatoren: Von dynamischer Bose–Einstein-Kondensation hin zum elektrisch betriebenen Polariton-Laser (Cuvillier Verlag, Göttingen, 2013)Google Scholar
  36. 36.
    E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69(11–12), 681 (1946)Google Scholar
  37. 37.
    J.M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, V. Thierry-Mieg, Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81(5), 1110–1113 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    S. Reitzenstein, A. Forchel, Quantum dot micropillars. J. Phys. D: Appl. Phys. 43(3), 033001 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    B. Gayral, J.M. Gérard, Comment on single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett. 90(22), 229701 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, A. Scherer, Vacuum Rabi splitting in semiconductors. Nat. Phys. 2(2), 81–90 (2006)CrossRefGoogle Scholar
  41. 41.
    C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69(23), 3314 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432(7014), 197–200 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432(7014), 200–203 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.M. Gérard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95(6), 067401 (2005)Google Scholar
  45. 45.
    V. Savona, F. Tassone, C. Piermarocchi, A. Quattropani, P. Schwendimann, Theory of polariton photoluminescence in arbitrary semiconductor microcavity structures. Phys. Rev. B 53(19), 13051 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1994)zbMATHCrossRefGoogle Scholar
  47. 47.
    N. Peyghambarian, S.W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Upper Saddle River, 1993)Google Scholar
  48. 48.
    M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, S. Haroche, Quantum rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76(11), 1800–1803 (1996)ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    J. Bloch, T. Freixanet, J.Y. Marzin, V. Thierry-Mieg, R. Planel, Giant Rabi splitting in a microcavity containing distributed quantum wells. Appl. Phys. Lett. 73(12), 1694–1696 (1998)ADSCrossRefGoogle Scholar
  50. 50.
    M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L.S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J.L. Staehli, B. Deveaud, High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414(6865), 731–735 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    V. Savona, L.C. Andreani, P. Schwendimann, A. Quattropani, Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Commun. 93(9), 733–739 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    J.J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 112(5), 1555 (1958)ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    G. Panzarini, L.C. Andreani, Quantum theory of exciton polaritons in cylindrical semiconductor microcavities. Phys. Rev. B 60(24), 16799–16806 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann, Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 56(12), 7554 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    A.I. Tartakovskii, M. Emam-Ismail, R.M. Stevenson, M.S. Skolnick, V.N. Astratov, D.M. Whittaker, J.J. Baumberg, J.S. Roberts, Relaxation bottleneck and its suppression in semiconductor microcavities. Phys. Rev. B 62(4), R2283 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    H. Deng, D. Press, S. Götzinger, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97(14), 146402 (2006)Google Scholar
  57. 57.
    G. Roumpos, C.-W. Lai, T.C.H. Liew, Y.G. Rubo, A.V. Kavokin, Y. Yamamoto, Signature of the microcavity exciton-polariton relaxation mechanism in the polarization of emitted light. Phys. Rev. B 79(19), 195310 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physics DepartmentPhilipps-Universität MarburgMarburgGermany

Personalised recommendations