Improving Parity Game Solvers with Justifications

  • Ruben LapauwEmail author
  • Maurice Bruynooghe
  • Marc Denecker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11990)


Parity games are infinite two-player games played on node-weighted directed graphs. Formal verification problems such as verifying and synthesizing automata, bounded model checking of LTL, CTL*, propositional \(\mu \)-calculus, ... reduce to problems over parity games. The core problem of parity game solving is deciding the winner of some (or all) nodes in a parity game. In this paper, we improve several parity game solvers by using a justification graph. Experimental evaluation shows our algorithms improve upon the state-of-the-art.


  1. 1.
    Benerecetti, M., Dell’Erba, D., Mogavero, F.: Improving priority promotion for parity games. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 117–133. Springer, Cham (2016). Scholar
  2. 2.
    Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via priority promotion. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 270–290. Springer, Cham (2016). ISBN 978-3-319-41539-0CrossRefGoogle Scholar
  3. 3.
    Bruse, F., Falk, M., Lange, M.: The fixpoint-iteration algorithm for parity games. In: Peron, A., Piazza, C. (eds.) Proceedings Fifth International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2014. EPTCS, Verona, Italy, 10–12 September 2014, vol. 161, pp. 116–130 (2014)Google Scholar
  4. 4.
    Calude, C.S., et al.: Deciding parity games in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 252–263. ACM (2017). ISBN 978-1-4503-4528-6Google Scholar
  5. 5.
    Cranen, S., et al.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013). ISBN 978-3-642-36742-7CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the propositional mu-calculus (extended abstract). In: Proceedings of the Symposium on Logic in Computer Science (LICS 1986), Cambridge, Massachusetts, USA, 16–18 June 1986. IEEE Computer Society, pp. 267–278 (1986). ISBN 0-8186-0720-3Google Scholar
  7. 7.
    Fearnley, J., et al.: An ordered approach to solving parity games in quasi polynomial time and quasi linear space. In: Erdogmus, H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, 10–14 July 2017, pp. 112–121. ACM (2017). ISBN 978-1-4503-5077-8Google Scholar
  8. 8.
    Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009). ISBN 978-3-642-04760-2CrossRefGoogle Scholar
  9. 9.
    Friedmann, O., Lange, M.: The PGSolver collection of parity game solvers. University of Munich (2009)Google Scholar
  10. 10.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). ISSN 3-540-00388-5CrossRefzbMATHGoogle Scholar
  11. 11.
    Hou, P., De Cat, B., Denecker, M.: FO(FD): extending classical logic with rule-based fixpoint definitions. TPLP 10(4–6), 581–596 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000). ISBN 3-540-67141-1CrossRefGoogle Scholar
  13. 13.
    Kant, G., van de Pol, J.: Efficient instantiation of parameterised Boolean equation systems to parity games. In: Wijs, A., Bosnacki, D., Edelkamp, S. (eds.) Proceedings First Work-Shop on GRAPH Inspection and Traversal Engineering, GRAPHITE 2012. EPTCS, Tallinn, Estonia, 1st April 2012, vol. 99, pp. 50–65 (2012)Google Scholar
  14. 14.
    Keiren, J.J.A.: Benchmarks for parity games. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS, vol. 9392, pp. 127–142. Springer, Cham (2015). ISBN 978-3-319-24643-7CrossRefGoogle Scholar
  15. 15.
    Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marrero, W.R.: An improved algorithm for the evaluation of fixpoint expressions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 338–350. Springer, Heidelberg (1994). ISBN 3-540-58179-6CrossRefGoogle Scholar
  16. 16.
    Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 369–384. Springer, Heidelberg (2008). ISBN 978-3-540-87530-7CrossRefGoogle Scholar
  17. 17.
    Seidl, H.: Fast and simple nested fixpoints. Inf. Process. Lett. 59(6), 303–308 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dijk, T.: Attracting tangles to solve parity games. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 198–215. Springer, Cham (2018). ISBN 978-3-319-96141-5CrossRefGoogle Scholar
  19. 19.
    Dijk, T.: Oink: an implementation and evaluation of modern parity game solvers. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 291–308. Springer, Cham (2018). ISBN 978-3-319-89959-6CrossRefGoogle Scholar
  20. 20.
    Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theor. Comput. Sci. 275(1–2), 311–346 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ruben Lapauw
    • 1
    Email author
  • Maurice Bruynooghe
    • 1
  • Marc Denecker
    • 1
  1. 1.Department of Computer ScienceKU LeuvenLeuvenBelgium

Personalised recommendations